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a b s t r a c t

This paper studies weak continuity of nonlinear filters. It is well-known that Borel measurability of
transition probabilities for problems with incomplete state observations is preserved when the original
discrete-time process is replaced with the process whose states are belief probabilities. It is also
known that the similar preservation may not hold for weak continuity of transition probabilities. In
this paper we show that the sufficient condition for weak continuity of transition probabilities for
beliefs introduced by Kara et al. (2019) is a necessary and sufficient condition for semi-uniform Feller
continuity of transition probabilities. The property of semi-uniform Feller continuity was introduced
recently by Feinberg et al. (2022), and the original transition probability for a Markov decision
processes with incomplete information has this property if and only if the transition probability of
the process, whose state is a pair consisting of the belief probability and observation, also has this
property. Thus, this property implies weak continuity of nonlinear filters. This paper also reviews
several necessary and sufficient conditions for semi-uniform Feller continuity.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

As was understood long ago in [1–5], the main general method
or studying problems with incomplete information is their re-
uction to problems with belief states or, in other words, pos-
erior distributions of the states. This is true for problems with
orel state, observation, and action spaces [6,7]. However, an
mportant property for stochastic optimization is weak continuity
f transition probabilities, and this property may not hold for
he process with belief states even if it holds for the original
rocess [8, Example 4.1].
This paper studies problems with a hidden state set W, a set of

bservations Y, and a set of decisions (or controls) A. These sets
re Borel subsets of Polish (complete separable metric) spaces.
e consider four models: a Markov Decision Process with Incom-

plete Information (MDPII), Platzman’s model, and two models of
artially Observable Markov Decision Processes (POMDPs): POMDP1
nd POMDP2. An MDPII, also known under several other names,
s probably the oldest model. This model and its versions are
escribed in many references including monographs [3,9,10] and
entioned above Refs. [1–7].
The dynamics of an MDPII is defined by transition probabilities

(dwt+1dyt+1|wt , yt , at ), where wt ∈ W is the hidden state, yt ∈
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Y is the observation, and at ∈ A is the selected control at the
time epoch t = 0, 1, . . .. Platzman’s model is an MPDII, for which
transition probabilities do not depend on observations, that is,
P(dwt+1dyt+1|wt , yt , at ) = P(dwt+1dyt+1|wt , at ). This model was
introduced in [11], where it was observed that two different
models of POMDPs had been studied in the literature. These
models were called POMDP1 and POMDP2 in [12].

POMDP1 is Platzman’s model with the transition probability
P(dwt+1dyt+1|wt , at ) = P1(dwt+1|wt , at )Q1(dyt+1|wt , at ), t =

0, 1, . . ., where P1 is the transition probability for hidden states,
and Q1 is the observation probability. POMDP2 is Platzman’s
model with the transition probability P(dwt+1dyt+1|wt , at ) =

P2(dwt+1|wt , at )Q2(dyt+1|at , wt+1), t = 0, 1, . . ., where P2 is the
transition probability for hidden states, and Q2 is the observation
probability. A POMDP1 is mostly used in operations research,
and POMDP2 is used both in operations research and electrical
engineering, and this model describes nonlinear Kalman filters;
see [8,11–13] for details. For infinite-state problems, most of the
results on continuity of transition probabilities for beliefs are
currently known for POMDP2 [8,12–16].

For POMDP2 sufficient conditions for weak continuity of tran-
sition probabilities for beliefs are provided in monographs
[13, p. 92] and [16, Chapter 2]. They both assume weak continuity
of transition probabilities P2 and continuity in total variations of
the observation probabilities Q2. They assumed other additional
conditions. In [8] it was shown that weak continuity of tran-

sition probabilities P2 and continuity in total variations of the
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bservation probabilities Q2 are sufficient for weak continuity of
transition probabilities for beliefs. This was done by using the
uniform Fatou lemma [17] and Assumption 2 below on continuity
properties of transition probabilities. Another proof of this fact
was provided in [15], where it was also provided another suf-
ficient condition for weak continuity of transition probabilities
for belief states; see assumption (iii) in Section 4. In addition,
a more general assumption (see Assumption 3 in Section 2 and
Assumption (M) in Section 4) is provided in [15] as an apparently
simpler alternative to Assumption 2.

Sufficient conditions for weak continuity of transition prob-
abilities for completely observable Markov Decision Processes
corresponding to MDPIIs were studied in [8,12,14]. Such com-
pletely observable models are called Markov Decision Processes
with Complete Information (MDPCIs). A state of an MDPCI is a
pair (zt , yt ), where zt is the belief probability (posterior probabil-
ity distribution of the state) and yt is the observation at epoch
t = 0, 1, . . .. A state of belief-MDPs, which can be constructed
for Platzman’s models and POMDPs, is the posterior probability
distribution of the state zt , t = 0, 1, . . .. States (zt , yt ) can be also
considered for models with complete information for Platzman’s
models and for POMDPs since by definitions MDPIIs are more
general models than Platzman’s models and POMDPs. In this pa-
per the transition probability for a completely observable model
with states (zt , yt ) is denoted by q(dzt+1dyt+1|zt , yt , at ), and its
marginal distribution is q̃(dzt+1|zt , yt , at ) := q(dzt+1,Y|zt , yt , at ).
Therefore, weak continuity of q implies weak continuity of q̃. For
Platzman’s models and POMDPs these transition probabilities do
not depend on observations yt , and q̃ is the transition probability
of the belief-MDP.

Continuity of belief probabilities for MDPCIs were studied
in [8,14], and recently MDPCIs with semi-uniform Feller transi-
tion probabilities and their applications to Platzman’s models and
POMDPs were investigated in [12]. The notion of semi-uniform
Feller transition probabilities was introduced in [18]. This prop-
erty is stronger than weak continuity. This property provides
the straightforward way to prove weak continuity of the transi-
tion probability q̂ for belief-MDPs for some problems. As shown
in [12], the transition probability q for beliefs is semi-uniform
Feller if and only the original transition probability P is semi-
uniform Feller; see Theorem 2 below. Semi-uniform Feller con-
tinuity of q implies weak continuity of q. Weak continuity of q
implies weak continuity of q̂. In addition, in view of Theorem 2
below, semi-uniform Feller continuity of the kernel P is equiva-
lent to semi-uniform Feller continuity of the kernel R, which is an
integrated version of the kernel P defined in (18) for MDPIIs and
in (23) for Platzman’s models and POMDPs.

Therefore, a natural research direction is to identify necessary
and sufficient conditions for semi-uniform Feller continuity of a
transition kernel. Two such conditions, were introduced in [18].
The first necessary and sufficient condition is Assumption 1 stated
below. The second one is Assumption 2 taken together with
continuity of the margin kernel; see Theorem 3. These two con-
ditions are based on sufficient conditions for weak continuity of
q̃ for POMDP2 introduced in [8,14] before semi-uniform Feller
continuity was defined in [18].

This paper introduces the necessary and sufficient Assump-
tion 3 based on assumption (M) introduced in Kara et al. [15]
as a sufficient condition of weak continuity of q̃ for POMDP2.
s we discussed above, in order to prove weak continuity of
he transition kernels q and q̃, it is sufficient to verify semi-
niform continuity of P . This can be done by verifying one of these
ssumptions for the transition kernel P .
Section 2 of this paper describes properties of semi-uniform

eller kernels. Theorem 4 is the main result of this paper. Sec-

ion 3 describes results on semi-uniform Feller continuity of

2

transition probabilities q for MDPCIs, and Section 4 describes
sufficient conditions for weak continuity of transition probabil-
ities q̂ for belief-MDPs corresponding to Platzman’s models and
POMDPs.

2. Semi-uniform Feller stochastic kernels

For a separable metric space S = (S, ρS), where ρS is a metric,
let τ (S) be the topology of S (the family of all open subsets of S),
and let B(S) be its Borel σ -field, that is, the σ -field generated by
all open subsets of the metric space S. For a subset S of S let S̄
denote the closure of S, and So is the interior of S. Then So is open,
¯ is closed, and So ⊂ S ⊂ S̄. Let ∂S := S̄ \ So denote the boundary
f S.
We denote by P(S) the set of probability measures on (S,B(S)).
sequence of probability measures {µ(n)

}n=1,2,... from P(S) con-
erges weakly to µ ∈ P(S) if for any bounded continuous function
on S∫
S
f (s)µ(n)(ds) →

∫
S
f (s)µ(ds) as n → ∞. (1)

his definition of weak convergence also applies to a sequence
f measures converging to a finite measure µ, that is, µ(S) <

. A sequence of probability measures {µ(n)
}n=1,2,... from P(S)

converges in total variation to µ ∈ P(S) if

sup
C∈B(S)

|µ(n)(C) − µ(C)| → 0 as n → ∞. (2)

Note that P(S) is a separable metrizable topological space
with respect to the topology of weak convergence for probability
measures when S is a separable metric space [19, Chapter II], and
there are several ways to introduce a metric on P(S) generating
this topology.

For a Borel subset S of a metric space (S, ρS), where ρS is
a metric, we always consider the metric space (S, ρS), where
ρS := ρS

⏐⏐
S×S . A subset B of S is called open (closed) in S if B

is open (closed) in (S, ρS). Of course, if S = S, we omit ‘‘in S’’.
Observe that, in general, an open (closed) set in S may not be
open (closed). For S ∈ B(S) we denote by B(S) the Borel σ -field
on (S, ρS). Observe that B(S) = {S ∩ B : B ∈ B(S)}. For metric
spaces S1 and S2, a (Borel-measurable) stochastic kernel Ψ (ds1|s2)
on S1 given S2 is a mapping Ψ ( · | · ) : B(S1) × S2 ↦→ [0, 1]
such that Ψ ( · |s2) is a probability measure on S1 for any s2 ∈ S2,
and Ψ (B| · ) is a Borel-measurable function on S2 for any Borel
set B ∈ B(S1). Another name for a stochastic kernel is a transition
probability. A stochastic kernel Ψ (ds1|s2) on S1 given S2 defines
a Borel measurable mapping s2 ↦→ Ψ ( · |s2) of S2 to the metric
space P(S1) endowed with the topology of weak convergence.
A stochastic kernel Ψ (ds1|s2) on S1 given S2 is called weakly
continuous (continuous in total variation), if Ψ ( · |s(n)) converges
weakly (in total variation) to Ψ ( · |s) whenever s(n) converges to s
in S2.

Definition 1 ([20]). A set F of real-valued functions on a metric
space S is called

(i) lower semi-equicontinuous at a point s ∈ S if lim infs′→s
inff∈F(f (s′) − f (s)) ≥ 0;

(ii) upper semi-equicontinuous at a point s ∈ S if the set {−f :

f ∈ F} is lower semi-equicontinuous at s ∈ S;
(iii) equicontinuous at a point s ∈ S, if F is both lower and

upper semi-equicontinuous at s ∈ S, that is, lims′→s supf∈F
|f (s′) − f (s)| = 0;

(iv) lower/upper semi-equicontinuous (equicontinuous respectively)
(on S) if it is lower/upper semi-equicontinuous (equicontin-
uous respectively) at all s ∈ S;
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(v) uniformly bounded (on S), if there exists a constant L < +∞

such that |f (s)| ≤ L for all s ∈ S and for all f ∈ F.

Let S1, S2, and S3 be Borel subsets of Polish spaces, and Ψ on
S1 × S2 given S3 be a stochastic kernel. For A ∈ B(S1), B ∈ B(S2),
and s3 ∈ S3, let

Ψ (A, B|s3) := Ψ (A × B|s3). (3)

In particular, we consider marginal stochastic kernels Ψ (S1, · | · )
on S2 given S3 and Ψ ( · , S2| · ) on S1 given S3.

Definition 2 ([18]). A stochastic kernel Ψ on S1 × S2 given S3 is
semi-uniform Feller if, for each sequence {s(n)3 }n=1,2,... ⊂ S3 that
converges to s3 in S3 and for each bounded continuous function
f on S1,

lim
n→∞

sup
B∈B(S2)

⏐⏐⏐⏐∫
S1

f (s1)Ψ (ds1, B|s
(n)
3 ) −

∫
S1

f (s1)Ψ (ds1, B|s3)
⏐⏐⏐⏐ = 0.

(4)

A semi-uniform Feller stochastic kernel Ψ on S1 × S2 given
S3 is weakly continuous [12,18]. We recall that the marginal
measure Ψ (ds1, B|s3), s3 ∈ S3, is defined in (3). As follows from
(4), if Ψ is a semi-uniform Feller stochastic kernel on S1×S2 given
S3, then for each B ∈ B(S2) the kernel Ψ (ds1, B|s3) on S1 given
S3 is weakly continuous, that is, if s(n)3 → s3 as n → ∞, where
s(n)3 , s3 ∈ S3 for n = 1, 2, . . ., then sequence of substochastic
measures {Ψ (ds1, B|s

(n)
3 )}∞n=1 converges weakly to Ψ (ds1, B|s3).

For each set A ∈ B(S1) consider the set of functions

FΨ
A = {s3 ↦→ Ψ (A × B|s3) : B ∈ B(S2)} (5)

mapping S3 into [0, 1]. Consider the following type of continuity
for stochastic kernels on S1 × S2 given S3.

Definition 3. A stochastic kernel Ψ on S1 ×S2 given S3 is called
WTV-continuous, if for each O ∈ τ (S1) the set of functions FΨ

O is
lower semi-equicontinuous on S3.

Definition 1(i) directly implies that the stochastic kernel Ψ

on S1 × S2 given S3 is WTV-continuous if and only if for each
O ∈ τ (S1)

lim inf
n→∞

inf
B∈B(S2)\{∅}

(
Ψ (O × B|s(n)3 ) − Ψ (O × B|s3)

)
≥ 0, (6)

whenever s(n)3 converges to s3 in S3. Since ∅ ∈ B(S2), (6) holds if
and only if

lim
n→∞

inf
B∈B(S2)

(
Ψ (O × B|s(n)3 ) − Ψ (O × B|s3)

)
= 0. (7)

The following theorem provides necessary and sufficient con-
ditions for semi-uniform Feller continuity of stochastic kernels;
see the relevant facts for weak continuity in [19,21].

Theorem 1 ([18]). For a stochastic kernel Ψ on S1 × S2 given S3,
the following conditions are equivalent:

(a) the stochastic kernel Ψ on S1 × S2 given S3 is semi-uniform
Feller;

(b) the stochastic kernel Ψ on S1 × S2 given S3 is WTV-continuous;
(c) if s(n)3 converges to s3 in S3, then for each closed set C in S1

lim
n→∞

sup
B∈B(S2)

(
Ψ (C × B|s(n)3 ) − Ψ (C × B|s3)

)
= 0; (8)

(d) if s(n)3 converges to s3 in S3, then, for each A ∈ B(S1) such that
Ψ (∂A, S2|s3) = 0,

lim sup |Ψ (A × B|s(n)3 ) − Ψ (A × B|s3)| = 0; (9)

n→∞ B∈B(S2)

3

(e) if s(n)3 converges to s3 in S3, then, for each nonnegative bounded
lower semi-continuous function f on S1,

lim inf
n→∞

inf
B∈B(S2)

(∫
S1

f (s1)Ψ (ds1, B|s
(n)
3 )

−

∫
S1

f (s1)Ψ (ds1, B|s3)
)

= 0; (10)

and each of these conditions implies continuity in total variation of
the marginal kernel Ψ (S1, · | · ) on S2 given S3.

Note that, since ∅ ∈ B(S2), (8) holds if and only if

lim sup
n→∞

sup
B∈B(S2)\{∅}

(
Ψ (C × B|s(n)3 ) − Ψ (C × B|s3)

)
≤ 0, (11)

and similar remarks are applicable to (9) and (10) with the
inequality ‘‘≥’’ taking place in (10). Now let S4 be a Borel subset
of a Polish space, and let Ξ be a stochastic kernel on S1 × S2
given S3 ×S4. Consider the stochastic kernel Ξ∫ on S1 ×S2 given
P(S3) × S4 defined by

Ξ∫ (A × B|µ, s4) :=

∫
S3

Ξ (A × B|s3, s4)µ(ds3), (12)

A ∈ B(S1), B ∈ B(S2), µ ∈ P(S3), s4 ∈ S4.
Note that Ξ is the integrand for Ξ∫ , which justifies the no-

tation Ξ∫ . The following theorem establishes the preservation of
semi-uniform Feller continuity under the integration operation in
(12).

Theorem 2 ([18]). A stochastic kernel Ξ∫ on S1 × S2 given P(S3) ×

S4 is semi-uniform Feller if and only if Ξ on S1 × S2 given S3 × S4
is semi-uniform Feller.

Let us consider the following assumption.

Assumption 1 ([18]). Let for each s3 ∈ S3 the topology on S1 have
a countable base τ

s3
b (S1) such that

(i) S1 ∈ τ
s3
b (S1);

(ii) for each finite intersection O = ∩
k
i=1Oi, k = 1, 2, . . ., of sets

Oi ∈ τ
s3
b (S1), i = 1, 2, . . . , k, the set of functions FΨ

O , defined
in (5) with A = O, is equicontinuous at s3.

Let S1, S2, and S3 be Borel subsets of Polish spaces, and Ψ

on S1 × S2 given S3 be a stochastic kernel. By Bertsekas and
Shreve [10, Proposition 7.27], there exists a stochastic kernel Φ

on S1 given S2 × S3 such that

Ψ (A × B|s3) =

∫
B
Φ(A|s2, s3)Ψ (S1, ds2|s3), A ∈ B(S1),

B ∈ B(S2), s3 ∈ S3. (13)

The stochastic kernel Φ( · |s2, s3) on S1 given S2 × S3 de-
fines a measurable mapping Φ : S2 × S3 → P(S1), where
Φ(s2, s3)( · ) = Φ( · |s2, s3). According to Bertsekas and Shreve [10,
Corollary 7.27.1], for each s3 ∈ S3 the mapping Φ( · , s3) : S2 →

P(S1) is defined Ψ (S1, · |s3)-almost surely uniquely in s2 ∈ S2. Let
us consider the stochastic kernel φ defined by

φ(D × B|s3) :=

∫
B
I{Φ(s2, s3) ∈ D}Ψ (S1, ds2|s3), (14)

D ∈ B(P(S1)), B ∈ B(S2), s3 ∈ S3, where a particular choice of a
stochastic kernel Φ satisfying (13) does not effect the definition
of φ in (14).

In models for decision making with incomplete information, φ
is the transition probability to the set of pairs (z, y), where z is a
are posterior probability distribution of a state, and y is an obser-

vation; (20). Continuity properties of φ play the fundamental role
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n the studies of models with incomplete information. Theorem 3
haracterizes such properties, and this is the reason for the title
f this section. Let us consider the following assumption.

ssumption 2 ([8]). For a stochastic kernel Ψ on S1×S2 given S3,
there exists a stochastic kernel Φ on S1 given S2 × S3 satisfying
(13) such that, if a sequence {s(n)3 }n=1,2,... ⊂ S3 converges to s3 ∈

3 as n → ∞, then there exists a subsequence {s(nk)3 }k=1,2,... ⊂

s(n)3 }n=1,2,... and a measurable subset B of S2 such that

(S1, B|s3) = 1 and Φ(s2, s
(nk)
3 ) converges weakly to Φ(s2, s3)

for all s2 ∈ B. (15)

In other words, the convergence in (15) holds Ψ (S1, ds2|s3)-
almost surely.

Theorem 3 ([12,18]). For a stochastic kernel Ψ on S1 × S2 given S3
the following conditions are equivalent:

(a) the stochastic kernel Ψ on S1 × S2 given S3 is semi-uniform
Feller;

(b) the stochastic kernel Ψ on S1 × S2 given S3 satisfies Assump-
tion 1;

(c) the marginal kernel Ψ (S1, · | · ) on S2 given S3 is continuous
in total variation and Assumption 2 holds;

(d) the stochastic kernel φ on P(S1)× S2 given S3 is semi-uniform
Feller.

For a metric space S, we say that a subset F(S) of the set of
bounded continuous functions f : S → R determines weak conver-
gence on P(S) if a sequence of probability measures {µ(n)

}n=1,2,...
from P(S) converges weakly to µ ∈ P(S) if and only if (1)
holds for all f ∈ F(S). According to [19, Theorem 6.6, p. 47],
if a metric space S is separable, then there exists a countable
set F(S) of uniformly bounded continuous functions on S, which
determines weak convergence on P(S). If a bounded continuous
function is added to F(S), then the new set also determines weak
convergence. Therefore, without loss of generality, we can assume
that the function IS belongs to F(S), where IS(s) = 1 for all s ∈ S.
The following assumption is motivated by [15, Assumption (M)];
see Section 4 below for details.

Assumption 3. For a stochastic kernel Ψ on S1 × S2 given
S3, there exists a countable subset F(S1) of the set of bounded
continuous functions f : S1 → R determining weak convergence
on P(S1) such that IS1 ∈ F(S1), and equality (4) holds for all
f ∈ F(S1).

The following theorem is the central result in this paper.

Theorem 4. A stochastic kernel Ψ on S1 × S2 given S3 is semi-
uniform Feller if and only if Assumption 3 holds.

Proof. A semi-uniform Feller kernel Ψ on S1 × S2 given S3
satisfies equality (4) for all bounded continuous functions f on
S1, and therefore Ψ satisfy Assumption 3.

Now, let Assumption 3 holds. The assumption IS1 ∈ F(S1)
means that the marginal kernel Ψ (S1, · | · ) is continuous in total
variation. Let us fix an arbitrary s3 ∈ S3. Let f ∈ F(S1). Since
the function f is bounded and the marginal kernel Ψ (S1, · | · ) is
continuous in total variation, (4) and (13) imply

lim
n→∞

sup
B∈B(S2)

|

∫
B

∫
S1

f (s1)Φ(ds1|s2, s
(n)
3 )Ψ (S1, ds2|s3)

−

∫ ∫
f (s1)Φ(ds1|s2, s3)Ψ (S1, ds2|s3)| = 0

(16)
B S1

4

because the family of Borel measurable functions
{s2 ↦→

∫
S1

f (s1)Φ(ds1|s2, s
(n)
3 ) : n = 1, 2, . . .} is uniformly

bounded on S2 by the same constant as f is bounded on S1. This
is equivalent to

∫
S1

f (s1)Φ(ds1| · , s
(n)
3 ) →

∫
S1

f (s1)Φ(ds1| · , s3) in
L1(S2,B(S2), Ψ (S1, · |s3)). Therefore, Ψ (S1, · |s3)-a.s.∫

S1
f (s1)Φ(ds1| · , s

(nk)
3 ) →

∫
S1

f (s1)Φ(ds1| · , s3) as k → ∞, (17)

for some subsequence {nk}k=1,2,... (nk ↑ ∞ as k → ∞). Since
(17) holds for all f ∈ F(S1), it holds for all bounded continuous
functions f : S1 → R. Thus, Assumption 2 holds. In view of
Theorem 3(c), the stochastic kernel Ψ is semi-uniform Feller. □

3. Semi-uniform Feller continuity of transition probabilities
for MDPCIs

We start with the description of the well-known reduction
of an MDPII (W × Y,A, P, c) to an MDPCI [6,7,10,12,22]. For
epoch t = 0, 1, . . . consider the joint conditional probability
R(dwt+1dyt+1|zt , yt , at ) on next state (wt+1, yt+1) given the cur-
rent posterior state distribution zt ∈ P(W), observation yt ∈ Y,
and the current control action at defined by

R(B × C |z, y, a) :=

∫
W
P(B × C |w, y, a)z(dw), (18)

where B ∈ B(W), C ∈ B(Y), (z, y, a) ∈ P(W) × Y × A. In
view of (13), there exists a stochastic kernel H(z, y, a, y′)[ · ] =

H( · |z, y, a, y′) on W given P(W) × Y × A × Y such that

R(B × C |z, y, a) =

∫
C
H(B|z, y, a, y′)R(W, dy′

|z, y, a), (19)

where B ∈ B(W), C ∈ B(Y), (z, y, a) ∈ P(W)×Y×A. The stochastic
kernel H( · |z, y, a, y′) introduced in (19) defines a measurable
mapping H : P(W) × Y × A × Y→P(W). Moreover, the mapping
y′

↦→ H(z, y, a, y′) is defined R(W, · |z, y, a)-a.s. uniquely for each
triplet (z, y, a) ∈ P(W) × Y × A.

Let IB denotes the indicator of an event B. The MDPCI is defined
as an MDP with parameters (P(W) × Y,A, q), where

(i) P(W) × Y is the state space;
(ii) A is the action set available at all state (z, y) ∈ P(W) × Y;

(iii) q on P(W) × Y given P(W) × Y × A is a stochastic kernel
defined by (14) with S1 := W, S2 := Y, and S3 := P(W) ×

Y × A, which determines the distribution of the new state.
That is, for (z, y, a) ∈ P(W) × Y × A and for D ∈ B(P(W))
and C ∈ B(Y),

q(D × C |z, y, a) :=

∫
C
I{H(z, y, a, y′) ∈ D}R(W, dy′

|z, y, a).

(20)

Note that a particular measurable choice of a stochastic kernel H
from (19) does not effect the definition of q in (20).

The transition probability q, which is a stochastic kernel on
P(W) × Y given P(W) × Y × A, defines transition probabilities
for MDPCI, and we are interested in establishing its continuity
properties. To do this, it is also useful to write the formula

P(B × C |w, y, a) =

∫
C
H(B|w, y, a, y′)P(W, dy′

|w, y, a) (21)

for B ∈ B(W), C ∈ B(Y), (w, y, a) ∈ W × Y × A, which is
similar to (19), and we use the same notation H for the transition
probability as in (19) because H(B|w, y, a, y′) = H(B|δw, y, a, y′)
for all (w, y, a) ∈ W × Y × A almost surely in P(W, dy′

|w, y, a),
where δw is the Dirac measure on W concentrated at w ∈ W.

In view of Theorem 2, the stochastic kernel P is semi-uniform

Feller if and only if the stochastic kernel R is semi-uniform Feller.
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n view of Theorem 3(a,d), the stochastic kernel R is semi-uniform
eller if and only if the stochastic kernel q is semi-uniform Feller.
his leads us to the following theorem.

heorem 5 ([12, Theorem 6.2]). Let (W × Y,A, P, c) be an MDPII,
nd (P(W)×Y,A, q, c̄) be its MDPCI. Then the following conditions

are equivalent:

(a) the stochastic kernel P on W × Y given W × Y × A is
semi-uniform Feller;

(b) the stochastic kernel R on W × Y given P(W) × Y × A is
semi-uniform Feller;

(c) the stochastic kernel q on P(W) × Y given P(W) × Y × A is
semi-uniform Feller.

The most significant fact in Theorem 5 is that semi-uniform
Feller continuity of P is necessary and sufficient for semi-uniform
Feller continuity of q. Theorems 1–4 provide necessary and suffi-
cient conditions for semi-uniform Feller continuity. Theorem 1
provides conditions based on the definition of semi-uniform
Feller continuity. Theorem 2 claims preservation of semi-uniform
Feller continuity under integration. In particular, Theorem 2 im-
plies statement (b) in Theorem 5. Theorems 3 and 4 prove that
each of the Assumptions 1 and 3 is necessary and sufficient
for semi-uniform continuity of a kernel. Theorem 3 also claims
that Assumption 2 and the assumption that the marginal kernel
Ψ (S1, · | · ) on S2 given S3 is continuous in total variation
taken together are necessary and sufficient for semi-uniform
Feller continuity of Ψ . Assumption 1 deals with equicontinuity
properties of stochastic kernels Ψ considered at certain sets,
Assumption 2 deals with weak continuity of stochastic kernels
Φ , and Assumption 3 deals with equicontinuity of integrals for a
countable set of functions determining weak convergence.

4. Continuity of transition probabilities for belief-MDPs

We recall that Platzman’s model is an MDPII whose transition
probability P is a stochastic kernel on W × Y given W × A. For
Platzman’s models and, in particular, for POMDPs, it is possible to
consider a completely observable MDP, called belief-MDP, whose
state space is P(W), and the set of actions is A. The transition
probability q̂ for the belief-MDPs is

q̂(D|z, a) := q(D,Y|z, a) =

∫
Y
I{H(z, a, y′) ∈ D}R(W, dy′

|z, a),

(22)

where D ∈ B(P(W)), z ∈ P(W), a ∈ A, and y′
∈ Y. We recall that

for Platzman’s models, including POMDPs, transition probabilities
P do not depend on observations y, that is, P(·, ·|w, y, a) =

P(·, ·|w, a), and formulae (18) and (19) become

R(B × C |z, a) :=

∫
W
P(B × C |w, a)z(dw), (23)

and

R(B × C |z, a) =

∫
C
H(B|z, a, y′)R(W, dy′

|z, a). (24)

Semi-uniform Feller continuity of the transition probability q
implies its weak continuity, which implies weak continuity of its
marginal probability q̂. Therefore, the results of Sections 2 and
3 provide sufficient conditions for weak continuity of q̂. In view
of Theorem 5, semi-uniform Feller continuity of the stochastic
kernel P implies weak continuity of q̂.

Formula (21) can be simplified for Platzman’s models to

P(B × C |w, a) =

∫
H(B|w, a, y′)P(W, dy′

|w, a), (25)

C

5

where formula (25) is related to formula (24) in the same way
(21) is related to (19). In particular, the relation between the
kernel H on W × Y given W × Y in (25) and the kernel H on
W×Y given P(W)×Y in (24) is H(B|δw, a, y′) = H(B|w, a, y′) for
all (w, a) ∈ W × A almost surely in P(W, dy′

|w, a).
According to Theorem 5, there are two approaches to prove

semi-uniform Feller continuity of the kernel q: (i) prove semi-
uniform continuity of P , and (ii) prove semi-uniform continuity
of R. The kernel R defines the kernel q̂ via (22), and kernel R
was used to prove weak continuity of q̂ in several references
including [8,13,15]. However, it is typically easier to use approach
(i) than (ii) to prove semi-uniform Feller continuity of q. In par-
ticular, formula (25) is useful for verifying Assumption 2 for the
kernel P .

In the literature on POMDPs, the transition probability q̂ is
usually defined by the right-hand side of (22), and the transition
probability q is not considered. Here and in [12] we consider q
because its weak continuity implies weak continuity of q̂. The
transition probability q is important for MDPCIs. Platzman’s mod-
els including POMDPs are particular cases of MDPIIs, and MDPCIs
can be also constructed for them. The state space of an MDPCI is
P(W) × Y. However, if one-step costs do not depend on obser-
vations, neither transition probability between belief states z ∈

P(W) nor costs depend on observations y ∈ Y. For such problems,
the set Y contains non-essential information, and, therefore, it is
sufficient to consider only the state space P(W) for belief-MDPs
for Platzman’s models including POMDPs when costs do not de-
pend on observations; see [12] for details. The general theory for
such reductions is described in [23]. The original development of
that theory was motivated by Continuous-Time Markov Decision
Processes [24] and their reduction to discrete time [25].

Recall that POMDP1 is Platzman’s model with the transition
probability

P(B × C |w, a) = P1(B|w, a)Q1(C |w, a),

where B ∈ B(W), C ∈ B(Y), w ∈ W, a ∈ A, P1 is a stochastic
kernel on W given W × A, and Q1 is a stochastic kernel on Y
given W × A. Thus, P1 is the transition probability for the MDP
with hidden states, and Q1 is the observation probability. For
a POMDP1 semi-uniform Feller continuity of P is equivalent to
the validity of the following properties: the transition probability
P1 is weakly continuous, and the observation probability Q1 is
continuous in total variation [12, Corollary 6.10].

Recall that POMDP2 is Platzman’s model with the transition
probability

P(B × C |w, a) :=

∫
B
Q2(C |a, w′)P2(dw′

|w, a), (26)

where B ∈ B(W), C ∈ B(Y), w ∈ W, a ∈ A, P1 is a stochastic
kernel on W given W × A, and Q2 is a stochastic kernel on Y
given A × W. Thus, P2 is the transition probability for the MDP
with hidden states, and Q2 is the observation probability.

For POMDP2 semi-uniform Feller continuity of P holds in the
following two cases [12, Corollary 6.10]:

(i) the transition probability P2 is weakly continuous, and the
observation probability Q2 is continuous in total variation;

(ii) the transition probability P2 is continuous in total variation,
and the observation probability Q2( · |a, · ) is continuous in
total variation in the control parameter a ∈ A.

Thus, if the transition probability Pi is weakly continuous, and
the observation probability Qi is continuous in total variation,
then the transition probability q̂ is weakly continuity for POMDPi,
i = 1, 2. In addition, if the transition probability P2 is continu-
ous in total variation, and observation probability Q ( · |a, · ) is
2
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ontinuous in total variation in the control parameter a, then the
ransition probability q̂ is weakly continuity for POMDP2.

Sufficiency of condition (i) for weak continuity of the transi-
ion kernel q̂ for a POMDP2 was proved directly in [8]. Another
roof of this fact was provided in [15], where also the following
ufficient condition, for weak continuity of q̂ was established:

(iii) the transition probability P2 is continuous in total variation,
and the observation probability Q2 does not depend on the
control parameter a.

Condition (ii) is a generalization of condition (iii).
Thus, for POMDP1 weak continuity of P1 and continuity of Q1

in total variation are the necessary and sufficient conditions for
semi-uniform Feller continuity of P . For POMDP1 statements (i)
and (ii) provide sufficient conditions for weak continuity of P . The
natural question is whether conditions (i) and (ii) taken together
are necessary? Example 1 provides the negative answer to this
question. Therefore, criteria for semi-uniform Feller continuity
are important for studying POMDP2.

Let us consider an example of POMDP2 with a semi-uniform
Feller continuous kernel P which falls neither into case (i) nor into
case (ii).

Example 1. The transition kernel P2 on W given W × A is
weakly continuous, but it is not continuous in total variation, the
observation kernel Q2 on Y given A×W does not depend on the
control parameter a, and it is not continuous in total variation,
and the transition kernel P on W×Y given W×A is semi-uniform
Feller continuous.

Let d+ := max{d, 0}, and d− := min{d, 0} for each d ∈

R. We set W = Y = A := R, P2(B|w, a) := I{w+ ∈ B},
nd Q2(C |w) := I{w− ∈ C}, w, a ∈ R, B, C ∈ B(R). Then
W f (w′)P2(dw′

|w, a) = f (w+) and
∫
Y g(y)Q2(dy|w) = g(w−) for

ounded continuous functions f and g . Stochastic kernels P2 and
2 are obviously weakly continuous at each w ∈ R, but each of
hem is not continuous in total variation at w = 0. Moreover,
irect calculations imply that P(B× C |w, a) = I{w+ ∈ B}I{0 ∈ C},
, C ∈ B(R), w, a ∈ R, and P is semi-uniform Feller continuous
ecause for each sequence {w(n)

}n=1,2,... ⊂ R that converges to
∈ R and for each bounded continuous function f on R,

lim
→∞

sup
C∈B(R)

⏐⏐⏐⏐∫
R
f (w′)P(dw′, C |w(n)) −

∫
R
f (w′)P(dw′, C |w)

⏐⏐⏐⏐
= lim

n→∞
sup

C∈B(R)
I{0 ∈ C}

⏐⏐⏐f (w(n)
+ ) − f (w+)

⏐⏐⏐ = 0,

here the last equality follows from continuity of f on R.

emark 1. Since q is semi-uniform Feller if and only if P is
emi-uniform Feller, then q and q̂ are weakly continuous if P
s semi-uniform Feller. However, it is possible that q̂ is weakly
ontinuous, but P is not semi-uniform Feller. For example, let us
resent an MDP with the state space W, and the action space A,
nd transition probability p(B|w, a) = I{w ∈ B} as POMDP2 with

= W, P2(B|w, a) = I{w ∈ B}, and Q2(C |a, w) = I{w ∈ C},
here w ∈ W, a ∈ A, y ∈ Y, B ∈ B(W), and C ∈ B(Y). Then
(B × C |w, a) = I{w ∈ B ∩ C}, and the kernel P is not semi-
niform Feller. It is easy to see that q̂ is weakly continuous in this
xample. In particular, for this example H(B|z, a, y) = I{y ∈ B}
atisfies (24). The kernel H is weakly continuous, and together
ith weak continuity of P2 and Q2 this is a sufficient condition

or weak continuity of q̂, see e.g., [13, p. 90] or [8, Theorem 3.2].

Assumption 1 was introduced in [18], and its stronger version,
hen the base τ

s3
b (S1) does not depend on s3, was introduced

n [14] to study MDPIIs. Assumption 2 was introduced in [8]

or the transition probability R defined in (18) for the transition

6

robability P defined in (26). Assumption 3 is relevant to Assump-
ion (M) introduced in [15] for the transition probability R as an
lternative to Assumption 2 for a sufficient condition of weak
ontinuity of the transition probability q̂ for POMDP2. In terms
f this paper, Assumption (M) from [15] can be formulated in the
ollowing form.

ssumption (M) ([15]). For a countable set F(W) = {fm}m≥1 of
niformly bounded continuous functions f : W → R such that:

(a) IW ∈ F;

(b) F(W) metrizes the weak topology on P(W) with the metric

ρ(µ, ν) :=

∞∑
m=1

2−m
⏐⏐⏐⏐∫

W
fm(w)µ(dw) −

∫
W
fm(w)ν(dw)

⏐⏐⏐⏐ ,
(27)

(c) equicontinuity property (4) holds for all f ∈ F(S1) with
s1 = w, S1 = W, S2 = Y, S3 = P(W) × A, and Ψ = R.

Assumption (M) can be viewed as an implementation of As-
umption 3 for particular spaces. The following two differences
re not essential:

Assumption 3 states that the functions in F(S1) are bounded,
and Assumption (M) assumes that the functions in F(W) are
uniformly bounded;
Assumption 3 states that the set of functions F(S1) deter-
mines the topology of weak convergence, while Assump-
tion (M) states the metric ρ defined in (27) metrizes the
topology of weak convergence on P(W).

ndeed, the family F(S1) = {fm}m≥1 in Assumption 3 consists of
ounded functions. This means that sups1∈S1 |fm(s1)| ≤ Lm < +∞

or all m = 1, 2, . . . . Then {fm/max{Lm, 1}}m=1,2,... is the set
f uniformly bounded functions satisfying all the conditions in
ssumption 3. In addition, when S1 = W, the condition that
he set F(S1) determines weak convergence on P(S1) and the
ondition that the metric ρ defined in (27) metrizes the topology
f weak convergence on P(W) are obviously equivalent since W
s a metric space.

It was observed in [15] for POMDP2 that Assumption (M) is
ore general than assumptions (i) and (iii) stated in this section.

ndeed, as follows from [12, Corollary 6.10] and Theorems 4, 5,
ssumptions (i)–(iii) from this section are sufficient conditions for
emi-uniform Feller continuity of each of the transition proba-
ilities P , R, and q, while Assumption (M) is the necessary and
ufficient conditions for semi-uniform Feller continuity of P , R,
nd q.
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