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1. Introduction

It is well known that epi-convergence is a suitable framework for analyzing ap-
proximating optimization problems. It furnishes guarantees about near-minimizers,
level-sets, and minimum values for the problems as compared to those of a limiting,
actual problem; see for example [2, 4, 22]. A recent summary of properties for func-
tions defined on metric spaces is given by [25]. Epi-convergence is therefore central
in the development of optimization algorithms, which often rely on approximations,
and in stability analysis of optimization problems. It also emerges as a means to es-
tablish strong duality for dual problems obtained via general perturbation schemes
[27, Section 5.F]. In this paper, we provide sufficient conditions for epi-convergence
of expectation functions under varying measures and integrands.
The study of expectation functions is critical for stochastic optimization and sta-
tistical estimation. The first systematic examination of epi-convergence for such
functions appears to be [9], which also includes a review of the earlier literature.
ISSN 0944-6532 / $ 2.50 © Heldermann Verlag
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The setting is limited to expectation functions defined on Rn, a fixed integrand,
and probabilities converging weakly under a tightness assumption. An extension to
separable reflexive Banach spaces, with a focus on Mosco-epi-convergence, is devel-
oped in [20] under similar assumptions. For separable Banach spaces, [3] establishes
epi-convergence for empirical distributions (generated by pairwise independent sam-
pling) and a fixed integrand, and also includes extensions to convergence in the
stronger Attouch-Wets topology. A further extension to complete separable metric
spaces is given by [1], again under a fixed integrand and empirical distributions
obtained by independent sampling. A nearly identical setting is considered in [16],
which also develops statistical applications. A specialization to the case of convex
integrands is provided by [18]; see also [29]. Going beyond empirical distributions,
[7, 19] establish epi-convergence of expectation functions for ergodic processes. Re-
cently, [8] reexamines epi-convergence under weakly converging probabilities as in
[9], but now in the general setting of Hausdorff topological spaces. Without mak-
ing explicit assumptions on the sequence of probabilities, but instead expressing
assumptions in terms of Pasch-Hausdorff envelopes, [17] develops a general frame-
work for establishing epi-convergence of expectation functions defined on separable
metric spaces.
While we make precise comparison below, the present paper is distinct by considering
varying integrands; the above studies keep the integrand fixed as the probabilities
change. Varying integrands appear in applications, for example, as the result of
computationally motivated approximations that need to be consider in conjunction
with the varying probabilities. Sieves in statistical estimation [15, 26] as well as
discretization of an infinite-dimensional space of controls and numerical solution of
differential equations [6, 21, 28] can be viewed from this angle. Moreover, we estab-
lish conditions under which a lower limit of approximating expectation functions is
bounded from below by the actual expectation function in the sense of a “paramet-
ric” Fatou’s lemma with varying measure. This property furnishes the “first half”
of epi-convergence (a limit gives the “second half”), but we argue that it stands on
its own as a useful property, especially in difficult cases when epi-convergence might
be beyond reach.
To formalize the setting, we let R := R ∪ {−∞,+∞} and denote by B(R) its
Borel σ-algebra. For probability space (Ω,A, µ) and (A,B(R))-measurable function
g : Ω → R, the integral∫

Ω

g(ω)µ(dω) :=

∫
Ω

g+(ω)µ(dω)−
∫
Ω

g−(ω)µ(dω),

where g+(ω) := max{g(ω), 0}, g−(ω) := −min{g(ω), 0}, and we use the conventions
+∞− α = +∞ and β − (+∞) = −∞ hold for α ∈ R and β ∈ R everywhere in the
paper. This integral is an expectation, and we often use the notation

Eµ
[
g(ω)

]
:=

∫
Ω

g(ω)µ(dω).

Let Â be the µ-completion of the σ-algebra A. Then the integral is always defined
for an Â-measurable function g : (Ω, Â) → (R,B(R)), and, if both integrals of g+
and g− are equal to +∞, then the integral of g is also equal to +∞.
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Let (X, dX) be a metric space and (Ξ,F) be a measurable space. Then, a function
f : Ξ×X → R is an integrand if f(·, x) is (F ,B(R))-measurable for each x ∈ X. An
integrand f together with a probability P on (Ξ,F) define an expectation function
EP [f ] : X → R given by

EP
[
f
]
(x) := EP

[
f(ξ, x)

]
, x ∈ X.

If Ξ is a metric space, we always consider F being its Borel σ-algebra B(Ξ).

Let N = {1, 2, . . . }. We consider sequences of integrands {f, f ν :Ξ×X → R, ν∈N}
and probabilities {P, P ν , ν ∈ N}, all defined on (Ξ,F), and examine sufficient
conditions for epi-convergence of the resulting sequence of expectation functions
{EP ν

[f ν ] : X → R, ν ∈ N} to the expectation function EP [f ] : X → R. We also
examine when xν → x implies lim inf ν→+∞ EP ν

[f ν ](xν) ≥ EP [f ](x), which can be
viewed as a “functional” Fatou’s lemma under varying measure.
Section 2 presents preliminary facts. The main theorems appear in Section 3. Sec-
tion 4 provides motivating applications. An appendix provides an additional proof.

2. Preliminaries

We recall that {hν : X → R, ν ∈ N} epi-converges to h : X → R, written as
h = e-limν→+∞ hν , if at each x ∈ X, the following two conditions hold:
(i) if {xν}ν∈N converges to x, then h(x) ≤ lim inf

ν→+∞
hν(xν);

(ii) there exists a sequence {xν}ν∈N convergent to x such that h(x) = lim
ν→+∞

hν(xν).

For a function h : X → R, its epigraph is given by epih :={(x, α)∈X×R | h(x) ≤ α}.
The function is lower semicontinuous (lsc) if epih is a closed subset of X × R in
the product topology. It is upper semicontinuous (usc) if −h is lsc. The lower
regularization of h, denoted by h : X → R, is defined as

h(x) := lim inf
x′→x

h(x′), x ∈ X.

Thus, h : X → R is lsc. If h is lsc, then h = h.
The Pasch-Hausdorff envelope of h : X → R with parameter κ ∈ [0,+∞) is the
function hκ : X → R defined as

hκ(x) := inf
x′∈X

{
h(x′) + κdX(x, x

′)
}
, x ∈ X. (1)

Trivially, when 0 ≤ κ1 ≤ κ2 < +∞, one has

hκ1(x) ≤ hκ2(x) ≤ h(x) ∀x ∈ X.

The definition of an infimum enables us to conclude that hκ(x) = hκ(x) for each
κ ∈ [0,+∞) and each x ∈ X, where hκ is the Pasch-Hausdorff envelope of h. If
epih 6= ∅ and there are α > 0, β ∈ R, and x̄ ∈ X such that h(x)+αdX(x, x̄)+β ≥ 0
for all x ∈ X, then (see for example [16, Proposition 3.3])

∀x ∈ X : hκ(x) ↑ h(x) as κ → +∞ (2)

and hα(x̄) > −∞.
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In fact, for κ > α, hκ is real-valued and Lipschitz continuous with modulus κ, i.e.,∣∣hκ(x)− hκ(x
′)
∣∣ ≤ κdX(x, x

′) ∀x, x′ ∈ X. (3)

Furthermore, if {hν : X → R, ν ∈ N} is a sequence of functions such that for some
κ0 ∈ N and x0 ∈ X,

lim inf
ν→+∞

hν
κ0
(x0) > −∞, (4)

then [16, Proposition 3.4] implies that for each x ∈ X

lim inf
(ν,y)→(+∞,x)

hν(y) = sup
κ∈N

lim inf
ν→+∞

hν
κ(x). (5)

For f : Ξ × X → R, ξ ∈ Ξ, and κ ∈ [0,+∞), we abuse notation slightly and write
fκ for the Pasch-Hausdorff envelope of f(ξ, ·), i.e., fκ : Ξ × X → R is given by
fκ(ξ, x) = infx′∈X{f(ξ, x′) + κdX(x

′, x)}. In view of [16, Propositions 4.2], if X is
a Suslin space and the function f is measurable, then for each x ∈ X the function
ξ 7→ fκ(ξ, x) is F̂ -measurable, where F̂ is the P -completion of the sigma-algebra F .
Likewise, f ν

κ stems from f ν : Ξ× X → R.
For probability spaces (Ξ,F , P ν), ν ∈ N, let us consider the probability spaces
(Ξ, F̂ν , P ν), where F̂ν are P ν-completions of the σ-algebra F . As explained in the
previous paragraph, if f ν : Ξ × X → R are measurable functions, ν ∈ N, then for
each κ, ν ∈ N and for each x ∈ X, the function ξ 7→ f ν

κ (ξ, x) is F̂ν-measurable on Ξ
if X is a Suslin space.

3. Main Results

This section provides two sufficient conditions for epi-convergence of expectation
functions. Theorem 3.2 extends [17, Theorem 3.1] by considering varying inte-
grands. As in [17], the main assumptions are expressed in terms of Pasch-Hausdorff
envelopes. Theorem 3.7 establishes epi-convergence in the setting with weakly con-
verging probabilities and extends [8, Theorem 1] to varying integrands. (While we
restrict the attention to metric spaces, [8] deals with Hausdorff topological spaces;
see below for a detailed comparison.) Here, we dispense of Pasch-Hausdorff envelopes
and instead rely on Fatou’s lemmas for weakly convergent probabilities [11, 12, 14].
In contrast to [17], [8], and earlier studies, we also bring forth bounds on lower
epi-limits, which emerge as useful in their own right as demonstrated in Section 4.
These bounds appear as Lemma 3.1 and Theorem 3.3.

Lemma 3.1. (Parametric Fatou’s lemma with varying probabilities) Let (Ξ,F) be
a measurable space, and X be a Suslin space. For probability measures {P, P ν , ν ∈ N}
on (Ξ,F) and functions {f, f ν : Ξ× X → R, ν ∈ N}, suppose that:
(i) {f, f ν , ν ∈ N} are measurable functions, and f(ξ, · ) is lsc for P -a.e. ξ ∈ Ξ;
(ii) there exist a countable dense subset X0 of X and an integer κ0 ∈ N such that

lim inf
ν→+∞

EP ν[
f ν
κ

]
(x0) ≥ EP

[
fκ
]
(x0) > −∞ (6)

for each x0 ∈ X0 and each κ ∈ [κ0,+∞).
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Then for every x ∈ X we have
lim inf

(ν,y)→(+∞,x)
EP ν[

f ν
]
(y) ≥ EP

[
f
]
(x),

with the right-hand side also exceeding −∞ when there exists x̃ ∈ X such that
lim inf

(ν,y)→(+∞,x̃)
EP ν[

f ν
]
(y) < +∞.

Proof. The proof of the lemma rethinks the proof of [17, Theorem 3.1]; see Ap-
pendix A.

We next turn to epi-convergence.
Theorem 3.2. (Epi-convergence of expectation functions) Let (Ξ,F) be a measur-
able space, and X be a Suslin space. For probability measures {P, P ν , ν ∈ N} on
(Ξ,F) and functions {f, f ν : Ξ × X → R}, suppose that assumptions (i)–(ii) of
Lemma 3.1 hold. Moreover, suppose that there is a countable dense subset X0 of X
such that for each x0 ∈ X0 we have

lim sup
ν→+∞

EP ν[
f ν

]
(x0) ≤ EP

[
f
]
(x0).

Then e-lim
ν→+∞

EP ν[
f ν

]
= EP

[
f
]
.

Proof. The liminf-condition in the definition of epi-convergence is immediately fur-
nished by Lemma 3.1. The limit-condition of the definition is established in the
second part of the proof of [17, Theorem 3.1] with minor technical clarifications.

Next, we turn to the special case when the probabilities P ν converge weakly to P ,
which is common in applications. As is well known, weak convergence may arise for
empirical distributions, in the context of central limit theorems, and for ergodic pro-
cesses. But, weak convergence may also define a topology on spaces of distribution
functions for the analysis of distributionally-robust optimization problems [24].
We denote by IB the indicator of the event B, that is IB = 1 if B is True, and
IB = 0 if B is False.
Theorem 3.3. (Parametric Fatou’s lemma for weakly convergent probabilities) Let
X and Ξ be metric spaces. For probability measures {P, P ν , ν ∈ N} on (Ξ,B(Ξ))
and functions {f, f ν : Ξ× X → R}, suppose that P ν converges weakly to P and the
following hold for each x ∈ X:
(i) {f( · , x), f ν( · , x), ν ∈ N} are measurable;

(ii) one has lim inf
K→+∞

lim inf
(ν,y)→(+∞,x)

EP ν[
f ν(ξ, y)I

{
ξ : f ν(ξ, y) ≤ −K

}]
= 0; (7)

(iii) for P -a.e. ξ ∈ Ξ : lim inf
(ν,y,ζ)→(+∞,x,ξ)

f ν(ζ, y) ≥ f(ξ, x). (8)

Then for each x ∈ X : lim inf
(ν,y)→(+∞,x)

EP ν[
f ν

]
(y) ≥ EP

[
f
]
(x). (9)

We observe that the first lower limit in (7) can be replaced by a limit because the
subsequent expression is nondecreasing in K. The same observation applies to for-
mula (10) below.
Before proving Theorem 3.3, we formulate and prove Theorem 3.4 which is a par-
ticular case of Theorem 3.3 when X is a singleton. Theorem 3.4 is an extension
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of Fatou’s lemma for weakly converging probabilities and unbounded functions [12,
Theorem 2.4] to the convention EP [g(ξ)] = +∞ if EP [g+(ξ)] = EP [g−(ξ)] = +∞.
In [12, Theorem 2.4], the generalized Fatou’s inequality (11) is proved under the
assumption that each expectation in the inequality has its positive part and/or its
negative part being finite. Another formal difference between Theorem 3.4 and [12,
Theorem 2.4] is that the former deals with probability measures while the latter
deals with finite measures. However, the case of finite measures follows from the
case of probability measures by normalization, if the limiting finite measure of the
entire space Ξ is positive. If the limiting finite measure is 0, then the right-hand
side of inequality (11) is 0, and assumption (10) implies that the lower limit on
the left-hand side of (11) is nonnegative. Thus, the extension of Theorem 3.4 from
probabilities to finite measures is routine.

Theorem 3.4. (Extended Fatou’s lemma for weakly convergent probabilities; cp.
[12, Theorem 2.4] ) Let Ξ be a metric space, {P ν}ν∈N be a sequence of probabilities on
Ξ converging weakly to a probability P on Ξ, and {hν}ν∈N be a sequence of measurable
R-valued functions on Ξ such that

lim inf
K→+∞

lim inf
ν→+∞

EP ν[
hν(ξ)I

{
ξ : hν(ξ) ≤ −K

}]
= 0. (10)

Then lim inf
ν→+∞

EP ν[
hν(ξ)

]
≥ EP

[
lim inf

(ν,ζ)→(+∞,ξ)
hν(ζ)

]
. (11)

The proof of Theorem 3.4 uses the following lemma stating additional properties of
expectations of functions satisfying assumption (10), which amounts to asymptotic
uniform integrability from below.

Lemma 3.5. Under the assumptions of Theorem 3.4, either

lim inf
ν→+∞

EP ν[
hν(ξ)

]
= +∞ or EP

[(
lim inf

(ν,ζ)→(+∞,ξ)
hν(ζ)

)
+

]
< +∞.

Proof. In view of (10), lim inf ν→+∞ EP ν[
hν(ξ)I

{
ξ : hν(ξ) ≤ −K0

}]
> −∞ for

some real K0 > 0. Therefore,

lim sup
ν→+∞

EP ν[
hν
−(ξ)

]
≤ lim sup

ν→+∞
EP ν[

hν
−(ξ)I

{
ξ : hν

−(ξ) ≥ K0

}]
+ lim sup

ν→+∞
EP ν[

hν
−(ξ)I

{
ξ : hν

−(ξ) < K0

}]
≤ − lim inf

ν→+∞
EP ν[

hν(ξ)I
{
ξ : hν(ξ) ≤ −K0

}]
+K0 < +∞.

Thus, lim sup ν→+∞ EP ν[
hν
−(ξ)

]
< +∞, and this inequality implies

lim inf
ν→+∞

EP ν[
hν
+(ξ)

]
≤ lim sup

ν→+∞
EP ν[

hν
−(ξ)

]
+ lim inf

ν→+∞
EP ν[

hν(ξ)
]
. (12)

Therefore, due to (12), if we have lim inf ν→+∞ EP ν[
hν(ξ)

]
< +∞, then we obtain

lim inf ν→+∞ EP ν[
hν
+(ξ)

]
< +∞. Thus, according to Fatou’s lemma for weakly con-

vergent probabilities [12, Theorem 2.4], we get

EP
[

lim inf
(ν,ζ)→(+∞,ξ)

hν
+(ζ)

]
≤ lim inf

ν→+∞
EP ν[

hν
+(ξ)

]
< +∞.
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Hence, EP
[(

lim inf
(ν,ζ)→(+∞,ξ)

hν(ζ)
)
+

]
= EP

[
lim inf

(ν,ζ)→(+∞,ξ)
hν
+(ζ)

]
< +∞

because
(
lim inf k→∞ ak

)
+
= lim inf k→∞ ak+ for each sequence {ak}k∈N ⊂ R since we

have (infk≥n a
k
)
+
= infk≥n a

k
+ for all n ∈ N and, therefore,

(sup
n∈N

inf
k≥n

ak
)
+
= sup

n∈N
inf
k≥n

ak+.

Proof of Theorem 3.4. If lim inf ν→+∞ EP ν[
hν(ξ)

]
= +∞ then (11) holds due to

the convention +∞− α = +∞ for each α∈R.
Otherwise, if lim inf ν→+∞ EP ν[

hν(ξ)
]
< +∞, then Lemma 3.5 implies that

EP
[(

lim inf
(ν,ζ)→(+∞,ξ)

hν(ζ)
)
+

]
< +∞. (13)

Fatou’s lemma for weakly converging probabilities [12, Theorem 2.4], (10), and (13)
imply (11).

Let us consider the following corollary to Theorem 3.4.

Corollary 3.6. Let Ξ be a metric space, {P ν}ν∈N be a sequence of probabilities on Ξ
converging weakly to a probability P on Ξ, and {hν}ν∈N be a sequence of measurable
R-valued functions on Ξ such that

lim sup
K→+∞

lim sup
ν→+∞

EP ν[
hν(ξ)I

{
ξ : hν(ξ) ≥ K

}]
= 0. (14)

Then lim sup
ν→+∞

EP ν[
hν(ξ)

]
≤ EP

[
lim sup

(ν,ζ)→(+∞,ξ)

hν(ζ)
]
. (15)

Proof. The proof repeats the proof of Theorem 3.4 with minor technical modifica-
tions. If

lim sup
ν→+∞

EP ν[
hν(ξ)

]
= −∞,

then (15) holds trivially. Otherwise, if

lim sup
ν→+∞

EP ν[
hν(ξ)

]
> −∞,

then Lemma 3.5 applied to the sequence {−hν}ν∈N implies that

EP
[(

lim sup
(ν,ζ)→(+∞,ξ)

hν(ζ)
)
−

]
> −∞. (16)

Fatou’s lemma for weakly converging probabilities [12, Theorem 2.4], (14), and (16)
imply (15).

Proof of Theorem 3.3. Fix an arbitrary x ∈ X. Consider a sequence {xν}ν∈N
converging to x such that

lim inf
(ν,y)→(+∞,x)

EP ν[
f ν

]
(y) = lim inf

(ν,xν)→(+∞,x)
EP ν[

f ν
]
(xν) = lim inf

ν→+∞
EP ν[

f ν
]
(xν). (17)
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Let us set hν( · ) := f ν( · , xν), ν ∈ N. We observe that (7) implies (10). Therefore,
since

lim inf
(ν,ζ)→(+∞,ξ)

hν(ζ) ≥ lim inf
(ν,y,ζ)→(+∞,x,ξ)

f ν(ζ, y),

(17), Theorem 3.4, and (8) imply (9).

Assumption (iii) in Theorem 3.3 relates to lsc as follows. For each x ∈ X, suppose
that the functions {f ν( · , x), ν ∈ N} are equi-lsc, i.e., for P -a.e. ξ ∈ Ξ, and for each
ε > 0 there exists δ > 0 such that

f ν(ζ, x) > f ν(ξ, x)− ε for all ζ ∈ BΞ(ξ; δ) and for sufficiently large ν ∈ N,

where BΞ(ξ; δ) := {ζ ∈ Ξ : dΞ(ζ, ξ) < δ}. Then (8) can be replaced with lower
semiconvergence of {f ν( · , x), ν ∈ N} to f( · , x) in probability P , that is, for each
ε > 0, one has

P
(
{ξ ∈ Ξ : f ν(ξ, x) ≤ f(ξ, x)− ε}

)
→ 0 as ν → +∞. (18)

This follows from [11, Theorem 4.1]. A sufficient condition for (18) is

lim inf
ν→+∞

f ν(ξ, x) ≥ f(ξ, x) for P -a.e. ξ ∈ Ξ. (19)

Moreover, (18) implies that

lim inf
k→+∞

f νκ(ξ, x) ≥ f(ξ, x) for P -a.e. ξ ∈ Ξ, (20)

for a subsequence {f νκ}k∈N ⊂ {f ν}ν∈N.
According to [12, Theorem 2.6], a sufficient condition for (7) is that for each x̄ ∈ X
there exists ρ > 0 and a sequence of measurable R-valued functions {gν}ν∈N on Ξ
such that

min
{
0, inf

x∈BX(x̄;ρ)
f ν(ξ, x)

}
≥ gν(ξ)

for sufficiently large ν∈N and ξ∈Ξ, where BX(x̄; ρ) := {x∈X : dX(x̄, x) ≤ ρ}, and

−∞ < EP
[

lim sup
(ν,ζ)→(+∞,ξ)

gν(ζ)
]
≤ lim inf

ν→+∞
EP ν[

gν(ξ)
]
. (21)

As demonstrated in [12, Example 3.3], condition (7) cannot be replaced in Theorem
3.3 with the following inequalities, which are weaker than (21):

−∞ < EP
[

lim inf
(ν,ζ)→(+∞,ξ)

gν(ζ)
]
≤ lim inf

ν→+∞
EP ν[

gν(ξ)
]
. (22)

If {P ν}ν∈N converges to P setwise, then the following inequalities

−∞ < EP
[
lim sup
ν→+∞

gν(ξ)] ≤ lim inf
ν→+∞

EP ν[
gν(ξ)

]
, (23)

which are similar to (21), imply the validity of Fatou’s inequality [13, Theorem 4.1].
If P ν = P , then P ν → P setwise trivially. If gν = g, then (23) becomes obviously
EP

[
g(ξ)

]
> −∞, which is the existence of an integrable minorant. This is a stronger
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condition than the uniform integrability condition (7) even in the classic case, when
X is a singleton. In this special, case when P ν = P and f ν = f , [27, Proposition
8.55] states that if f is random lsc and locally inf-integrable, then f is lsc. In terms of
the present paper, this is the special case when g = f . If P ν → P , in total variation,
then additional results on the convergence of expectations can be obtained from the
uniform Fatou’s lemma [14, Theorem 2.1].

Theorem 3.7. (Epi-convergence under weakly convergent probabilities) Let X and
Ξ be metric spaces. For probability measures {P, P ν , ν ∈ N} on (Ξ,B(Ξ)) and
functions {f, f ν : Ξ×X → R}, suppose that P ν converges weakly to P , assumptions
(i)–(iii) of Theorem 3.3 hold, and for each x ∈ X either EP [f ](x) = +∞ or there
exists a sequence {xν}ν∈N ⊂ X converging to x with the following properties:

(i) one has lim sup
K→+∞

lim sup
ν→+∞

EP ν[
f ν(ξ, xν)I

{
ξ : f ν(ξ, xν) ≥ K

}]
= 0; (24)

(ii) for P -a.e. ξ ∈ Ξ : lim sup
(ν,ζ)→(+∞,ξ)

f ν(ζ, xν) ≤ f(ξ, x). (25)

Then e-lim
ν→+∞

EP ν[
f ν

]
= EP

[
f
]
. (26)

Proof. Choose an arbitrary x ∈ X. If EP
[
f
]
(x) = +∞, then Theorem 3.3 implies

e-lim
ν→+∞

EP ν[
f ν

]
(x) = EP

[
f
]
(x).

Let EP
[
f
]
(x) < +∞. Fix a sequence {xν}ν∈N ⊂ X converging to x and satisfying

(24) and (25). Inequality (9) follows from Theorem 3.3. Therefore, to prove epi-
convergence it is sufficient to establish the inequality

lim sup
ν→+∞

EP ν[
f ν

]
(xν) ≤ EP

[
f
]
(x), (27)

which follows from Corollary 3.6 with hν( · ) := f ν( · , xν), ν ∈ N. We observe that
(24) implies (14), and (15) and (25) imply (27).

Theorem 3.7 strengthens the results of [9, 8] by considering approximating functions
f ν rather than a fixed integrand f . Specifically, [8, Theorem 1] allows X to be a
Hausdorff topological space and confirms epi-convergence of EP ν[

f
]

to EP
[
f
]

under
the assumptions that f is lsc and f(·, x) is usc for each x. Moreover, P ν converges
weakly to P and one has the following tightness condition: for each x ∈ X, for each
neighborhood V of x, and for each ϵ > 0, there exists a compact Kϵ ⊂ X such that∫

Ξ\Kϵ

∣∣f(ξ, x)∣∣P ν(dξ) +

∫
Ξ\Kϵ

∣∣fV (ξ)∣∣P ν(dξ) < ϵ ∀ν, (28)

where fV (ξ) = lim inf
ζ→ξ

[ inf
y∈V

f(ζ, y)], ξ ∈ Ξ.

These assumptions of [8, Theorem 1], when X is a metrizable space, imply the
conditions of Theorem 3.7. Indeed, suppose that f is lsc and f(·, x) is usc for each
x, and suppose that for a fixed x ∈ X, for each neighborhood V of x, and for
each ϵ > 0, there exists compact Kϵ such that (28) hold. Then, we can verify (7) as
follows. According to the proof of Theorem 1 from [8], the function fV is continuous.
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Its absolute value is bounded by some γ > 0 on the compact set Kϵ. Therefore,

lim inf
y→x

EP ν[
f(ξ, y)I

{
ξ : f(ξ, y) ≤ −γ

}]
≥ inf

y∈V
EP ν[

f(ξ, y)I
{
ξ : f(ξ, y) ≤ −γ

}]
≥ EP ν[

fV (ξ)I
{
ξ : fV (ξ) ≤ −γ

}]
≥ −ε,

(29)

where the first inequality follows from the definition of lower limits, the second
inequality holds because fV (ξ) ≤ f(ξ, y) < 0 if f(ξ, y) ≤ −γ, and the last inequality
follows from (28) because if fV (ξ) < −γ, then ξ ∈ Ξ\Kϵ. Thus, (7) holds. Similarly
to these arguments, we can verify (24) with xν := x, ν ∈ N. Inequality (8) for
f ν = f , ν ∈ N, follows from lsc of f . Inequality (25) for f ν = f , ν ∈ N, and xν := x,
ν ∈ N, follows from usc of f( · , x).
If the family of functions {f ν( · , xν), ν ∈ N} is equi-usc, i.e., if the family of functions
{−f ν( · , xν), ν ∈ N} is equi-lsc, then (25) can be replaced with upper semiconver-
gence of {f ν( · , xν), ν ∈ N} to f( · , x) in measure P , i.e., for each ε > 0

P
(
{ξ ∈ Ξ : f ν(ξ, xν) ≥ f(ξ, x) + ε}

)
→ 0 as ν → +∞. (30)

A sufficient condition for (30) is

lim sup
ν→+∞

f ν(ξ, xν) ≤ f(ξ, x) for P -a.e. ξ ∈ Ξ. (31)

4. Applications

As illustrations of the possibilities emerging from the above results, we present
two applications of Theorem 3.3 (parametric Fatou’s lemma) and two examples of
Theorem 3.7 (epi-convergence). In the following, for any set C, we let ιC(x) = 0 if
x ∈ C and ιC(x) = +∞ otherwise.

4.1. Sieves in Nonparametric Statistics

Consistency analysis of parametric and nonparametric estimation problems in statis-
tics is supported by the prior results. Here, we consider M -estimators with sieves
[15, 26] that are distinguished by being selected from a collection of sets indexed by
sample size and other varying quantities. Specifically, let (X, dX) be a metric space
of extended real-valued functions defined on a closed subset S of Rd, let (Ξ,B(Ξ)) be
a measurable space, and let (P , dP) be a metric space of probability measures defined
on (Ξ,B(Ξ)). For given collections {f, f ν : Ξ×X → R, ν ∈ N}, {X,Xν ⊂ X, ν ∈ N},
and {P, P ν ∈ P , ν ∈ N}, a minimizer of the optimization problem

minimize
x∈Xν

EP ν[
f ν(ξ, x)

]
(32)

is an estimator of “true” functions in X that, in turn, solve

minimize
x∈X

EP
[
f(ξ, x)

]
. (33)

Often, P ν is an empirical distribution produced by ν samples as an approximation of
the actual distribution P , but many other possibilities exist; see for example [16, 17].
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The discrepancy between Xν and X stems from the need to consider restrictions and
approximations of the function class X, especially when ν is small and/or d is large.
The “loss function” f is approximated by f ν to accommodate computations. For
example, a nonsmooth hinge-loss might be replaced by an approximating soft-max
loss. The consistency of estimators obtained from (32) can be established through
epi-convergence; see [9, 16, 17]. However, the focus has been on the special case
f ν = f and Xν = X for all ν; an exception is [26] where an adjustment of (32) is
proposed for Xν 6= X under the assumption that X = X and f ν = f . The source
of the difficulty caused by Xν 6= X is gleaned from the assumptions in Theorem
3.7, which essentially insist on f ν(ξν , xν) → f(ξ, x) when ξν → ξ and xν → x. We
discuss a different approach leveraging Theorem 3.3.
We equip X×P with the product topology. The actual problem (33) is equivalently
expressed as

minimize
(x,Q)∈X×P

ϕ(x,Q) := EQ
[
f(ξ, x) + ιX(x)

]
+ ι{P}(Q). (34)

This reformulation motivates an alternative to (32) involving a nonnegative param-
eter θν ∈ [0,+∞):

minimize
(x,Q)∈X×P

ϕν(x,Q) := EQ
[
f ν(ξ, x) + ιXν (x)

]
+ θνdP(Q,P ν); (35)

see [5] for related reformulations in finite dimensions. We show via Theorem 3.3 that
estimators obtained as the x-component of minimizers of (35) are consistent, in the
sense that ϕν epi-converges to ϕ (as functions on X × P), under broad conditions.
In particular, the analysis is unencumbered by Xν 6= X. These sets may even
depend on ξ, but the details are omitted below. Regardless, we observe that it is
advantageous to keep ιXν (x) inside the expectation defining ϕν because it helps with
assumption (ii) in Proposition 4.1.
We recall that the outer limit of a sequence of sets {Aν , ν ∈ N} in a topological
space, denoted by LimOut Aν , is the collection of points to which a subsequence
of {aν ∈ Aν , ν ∈ N} converges. The inner limit, denoted by LimInn Aν , is the
collection of points to which a sequence {aν ∈ Aν , ν ∈ N} converges. If both the
inner limit and the outer limit are equal to A, we say that {Aν , ν ∈ N} set-converges
to A.

Proposition 4.1. (consistency of sieved M -estimator) In the notation of this sub-
section, suppose that {Xν , ν ∈ N} are closed and set-converge to X, dP metrizes
weak convergence, θν → +∞, θνdP(P

ν , P ) → 0, and the following hold for each
x ∈ X:
(i) f( · , x) and f ν( · , x) are measurable for all ν∈N and f(ξ, x)>−∞ for all ξ∈Ξ;

(ii) for Qν → P (36)
lim inf
K→+∞

lim inf
(ν,y)→(+∞,x)

EQν[(
f ν(ξ, y) + ιXν (y)

)
I
{
ξ : f ν(ξ, y) + ιXν (y) ≤ −K

}]
= 0;

(iii) for P -a.e. ξ ∈ Ξ lim inf
(ν,y,ζ)→(+∞,x,ξ)

f ν(ζ, y) ≥ f(ξ, x); (37)
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(iv) for {xν∈Xν , ν∈N} converging to x and {Qν∈P , ν∈N} converging to Q∈P,
lim inf
ν→+∞

EQν[
f ν(ξ, xν)

]
> −∞;

(v) for {xν ∈ Xν , ν ∈ N} converging to x, there exists a P -integrable function
g : Ξ → [0,+∞) such that, for P -a.e. ξ ∈ Ξ, one has f ν(ξ, xν) ≤ g(ξ) for all
ν ∈ N and f ν(ξ, xν) → f(ξ, x) as ν → +∞.

Then, ϕν epi-converges to ϕ.
Proof. First, we consider the liminf-condition required for epi-convergence. Let
{(xν , Qν) ∈ X× P , ν ∈ N} converge to (x̄, Q) ∈ X× P . We consider three cases.
(a) Suppose that x̄ ∈ X and Q = P . Without loss of generality, we assume that
xν ∈ Xν because otherwise ϕν(xν , Qν) = +∞. Let f̂ , f̂ ν : Ξ× X → R be defined by
f̂(ξ, x) := f(ξ, x) + ιX(x) and f̂ ν(ξ, x) := f ν(ξ, x) + ιXν (x). Then, for each x ∈ X,
f̂(·, x) and f̂ ν(·, x) are measurable; recall that Xν is closed and X as well by virtue
of being a set-limit. Let x ∈ X. For P -a.e. ξ ∈ Ξ, one has

lim inf
(ν,y,ζ)→(+∞,x,ξ)

f̂ ν(ζ, y) ≥ lim inf
(ν,y,ζ)→(+∞,x,ξ)

f ν(ζ, y) + lim inf
(ν,y)→(+∞,x)

ιXν (y)

≥ f(ξ, x) + ιX(x) = f̂(ξ, x).

The last inequality follows by (iii) and the fact that Xν set-converges to X. There-
fore, we can invoke Theorem 3.3 for the integrands {f̂ , f̂ ν , ν ∈ N} and probabilities
{P,Qν , ν ∈ N} and conclude that

lim inf
ν→+∞

ϕν(xν , Qν) ≥ lim inf
ν→+∞

EQν[
f ν(ξ, xν) + ιXν (xν)

]
= lim inf

ν→+∞
EQν

[f̂ ν ](xν)

≥ EP [f̂ ](x̄) = ϕ(x̄, P ).

(b) If x̄ 6∈ X, then ϕ(x̄, Q) = +∞ and we seek to establish that ϕν(xν , Qν) → +∞.
Since Xν set-converges to X, xν 6∈ Xν for sufficiently large ν. This implies that
ϕν(xν , Qν) = +∞ for sufficiently large ν because ιXν (xν) = +∞.
(c) If x̄ ∈ X and Q 6= P , then ϕ(x̄, Q) = +∞. Since {dP(Qν , P ν), ν ∈ N} is bounded
away from zero as ν → +∞ because dP(Qν , P ν) ≥ dP(Q,P )−dP(Q,Qν)−dP(P, P

ν),
one has
lim inf
ν→+∞

ϕν(xν , Qν) ≥ lim inf
ν→+∞

EQν[
f ν(ξ, xν) + ιXν (xν)

]
+ lim inf

ν→+∞
θνdP(Q

ν , P ν) = +∞.

Here, the inequality follows from (iv).
Second, we consider the limit-condition in the definition of epi-convergence. Let
(x̄, Q) ∈ X × P . In light of the above liminf-condition, it suffices to show that
lim sup ν→+∞ ϕν(xν , Qν) ≤ ϕ(x,Q) for some xν → x and Qν → Q. Without loss
of generality, we assume that x̄ ∈ X and Q = P because otherwise the limsup-
condition holds trivially. Since Xν set-converges to X, there exists {xν ∈ Xν , ν ∈ N}
converging to x̄. We construct {Qν = P, ν ∈ N}. Then,

lim sup
ν→+∞

ϕν(xν , Qν) ≤ lim inf
ν→+∞

EP
[
f ν(ξ, xν)

]
+ lim sup

ν→+∞
θνdP(P, P

ν)

≤ EP
[
f(ξ, x̄)

]
= ϕ(x̄, P )

because θνdP(P, P ν) → 0. The last inequality follows from (v), which in conjunction
with (ii), permits us to invoke the dominated convergence theorem.
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As a concrete example, we let X be the space of extended real-valued functions
on S ⊂ Rd, excluding the function identical to −∞. This is a Polish space under
the hypo-distance; see [26]. Let Ξ = S and f ν(ξ, x) = f(ξ, x) = − log x(ξ), which
corresponds to a maximum likelihood estimator of a probability density on S. In this
case, the requirement in (iii) holds because xν converging to x in the hypo-distance
implies that lim sup ν→+∞ xν(ξν) ≤ x(ξ) for any ξν ∈ S → ξ. The requirement
in (v) about f(ξ, xν) → f(ξ, x) when xν converges to x in the hypo-distance now
translates into having xν(ξ) → x(ξ), which holds if X is equi-usc; see [26] for details
and examples.

4.2. Mollifiers for discontinuous functions

For a normed linear space X, it can be challenging to minimize a function g : X → R
if it is not continuous. A standard approach is to consider mollifiers to “smooth”
the function sufficiently, i.e., to replace g by the approximation x 7→ EP ν

[g(x+ ξ)],
where the probabilities P ν converge weakly to P , with P ({0}) = 1. Typically,
these probabilities are assumed to be absolutely continuous relative to a Lebesgue
measure; see [10]. One would establish epi-convergence of the approximations to g
as ν → +∞ to justify the approach. We show that Theorem 3.3 can be brought in
to justify approaches of this kind under general conditions including approximating
gν : X → R and discontinuous g. In contrast, [10] assumes that for each x ∈ X
there exist points xν → x such that g(xν) → g(x) and then also in the special case
of X = Rn.
Suppose that {gν : X → R, ν ∈ N} and (P , dP) is a metric space of probabilities
defined on (X,BX), where BX is the Borel sigma-algebra on X. For a collection
{P ν ∈ P , ν ∈ N} and θν ∈ [0,+∞), we consider the problem

minimize
(x,Q)∈X×P

ϕν(x,Q) := EQ
[
gν(x+ ξ)

]
+ θνdP(Q,P ν) (38)

as a substitute for the actual problem of minimizing g over X or, equivalently, solving

minimize
(x,Q)∈X×P

ϕ(x,Q) := EQ
[
g(x+ ξ)

]
+ ι{P}(Q). (39)

We show via Theorem 3.3 that ϕν epi-converges to ϕ (as functions on X×P), which
justifies the solution of (38) in lieu of (39).

Proposition 4.2. (Mollifiers) In the notation of this subsection, suppose that dP
metrizes weak convergence, θν → +∞, θνdP(P ν , P ) → 0, and the following hold for
each x ∈ X:
(i) {g, gν , ν ∈ N} are measurable;
(ii) for Qν → Q ∈ P

lim inf
K→+∞

lim inf
(ν,y)→(+∞,x)

EQν[(
gν(y + ξ)

)
I
{
ξ : gν(y + ξ) ≤ −K

}]
= 0; (40)

(iii) one has lim inf
(ν,y)→(+∞,x)

gν(y) ≥ g(x); (41)

(iv) for Q ∈ P, EQ[g(x+ ξ)] > −∞;
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(v) there exists a P -integrable function h :Ξ → [0,+∞) such that, for P -a.e. ξ∈Ξ,
one has gν(x+ ξ) ≤ h(ξ) for all ν ∈ N and gν(x) → g(x) as ν → +∞.

Then, ϕν epi-converges to ϕ.

Proof. First, we consider the liminf-condition required for epi-convergence. Let
{(xν , Qν) ∈ X × P , ν ∈ N} converge to (x̄, Q) ∈ X × P . Let f, f ν : Ξ × X → R
be defined by f(ξ, x) := g(x + ξ) and f ν(ξ, x) := gν(x + ξ). Then, for each x ∈ X,
f(·, x) and f ν(·, x) are measurable. Let x ∈ X. For all ξ ∈ Ξ, one has

lim inf
(ν,y,ζ)→(+∞,x,ξ)

f ν(ζ, y) = lim inf
(ν,y,ζ)→(+∞,x,ξ)

gν(y + ζ) ≥ g(x+ ξ) = f(ξ, x)

by assumption (iii). In consequence we can invoke Theorem 3.3 for the integrands
{f, f ν , ν ∈ N} and the probabilities {Q,Qν , ν ∈ N} and conclude that

lim inf
ν→+∞

EQν

[f ν ](xν) ≥ EQ[f ](x̄).

The right-hand side is not −∞ by assumption (iv). We consider two cases. (a)
Suppose that Q = P . Then,

lim inf
ν→+∞

ϕν(xν , Qν) ≥ lim inf
ν→+∞

EQν[
gν(xν + ξ)

]
= lim inf

ν→+∞
EQν

[f ν ](xν)

≥ EP [f ](x̄) = ϕ(x̄, P ).

(b) If Q 6= P , then ϕ(x̄, Q) = +∞. Since {dP(Qν , P ν), ν ∈ N} is bounded away
from zero as ν → +∞, one has

lim inf
ν→+∞

ϕν(xν , Qν) ≥ lim inf
ν→+∞

EQν[
gν(xν + ξ)

]
+ lim inf

ν→+∞
θνdP(Q

ν , P ν) = +∞.

Here, the first inequality follows from (iv).
Second, we consider the limit-condition in the definition of epi-convergence. Let
(x̄, Q) ∈ X×P . It suffices to show that lim sup ν→+∞ ϕν(xν , Qν) ≤ ϕ(x,Q) for some
xν → x and Qν → Q. Without loss of generality, we assume that Q = P . We
construct {xν = x̄, Qν = P, ν ∈ N}. Then,

lim sup
ν→+∞

ϕν(xν , Qν) ≤ lim inf
ν→+∞

EP
[
gν(x̄+ ξ)

]
+ lim sup

ν→+∞
θνdP(P, P

ν)

≤ EP
[
g(x̄+ ξ)

]
= ϕ(x̄, P ).

The last inequality follows from (v), which in conjunction with (ii) permits us to
invoke the dominated convergence theorem.

4.3. PDE-constrained optimization

We next turn to the application of Theorem 3.7 in the context of PDE-constrained
optimization and again assume that X and Ξ are metric spaces. Suppose that we
are faced with a PDE parameterized by ξ ∈ Ξ, representing parameters subject to
uncertainty, and x ∈ X representing control input. We assume that for each ξ ∈ Ξ
and x ∈ X, there is a unique solution of the PDE denoted by s(ξ, x) in a metric
space (U, dU), i.e., there is a well defined mapping

s : Ξ× X → U

furnishing solutions of the PDE for the various input parameters.
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Suppose that g : U×X → R represents a quantity of interest and P is a probability
on (Ξ,B(Ξ)) modeling the randomness in the parameter ξ, with Ξ being a metric
space and B(Ξ) its Borel sigma-algebra. Thus, a PDE-constrained optimization
problem tends to involve an expectation function

EP [f ] : X → R, where the integrand f : Ξ× X → R has f(ξ, x) = g
(
s(ξ, x), x

)
.

For computational and/or modeling reasons, the probability P needs to be replaced
by probabilities P ν on (Ξ,B(Ξ)), g replaced by an approximation gν : U× X → R,
and the solution mapping s by sν : Ξ × X → U. The latter usually represents
numerical solutions of the PDE. If X is infinite-dimensional, then it might need
to be approximated by a set Xν ⊂ X. The approximation gν could then simply
be defined by gν(u, x) = g(u, x) + ιXν (x). Regardless of the specifics, the setting
produces an approximating expectation function

EP ν

[f ν ] :X → R, where the integrand f ν :Ξ×X → R has f ν(ξ, x)=gν
(
sν(ξ, x), x

)
.

A PDE-constrained optimization problem involving EP [f ] can now be approximated
using EP ν

[f ν ], with this approach being justified through epi-convergence. Theo-
rem 3.7 provides sufficient conditions for such epi-convergence. Prior work do not
consider epi-convergence in this general setting; see for example [6], which leverages
continuous convergence of expectations and thus needs relatively strong assump-
tions.
We show via Theorem 3.7 that EP ν

[f ν ] epi-converges to EP [f ] under mild assump-
tions.

Proposition 4.3. (PDE-constrained optimization) In the notation of this subsec-
tion, suppose that P ν converges weakly to P and the following hold for each x ∈ X :

(i) {s(·, x), sν(·, x), g(·, x), gν(·, x), ν ∈ N} are continuous;

(ii) lim inf
K→+∞

lim inf
(ν,y)→(+∞,x)

EP ν[(
gν(sν(ξ, y), y)

)
I
{
ξ : gν(sν(ξ, y), y) ≤ −K

}]
= 0; (42)

(iii) for P -a.e. ξ ∈ Ξ, lim
(ν,y,ζ)→(+∞,x,ξ)

sν(ζ, y) = s(ξ, x),

lim
(ν,v)→(+∞,u)

gν(v, x) = g(u, x), lim inf
(ν,y,v)→(+∞,x,u)

gν(v, y) ≥ g(u, x);

(iv) if EP [g(s(ξ, x), x)] < ∞, then

lim sup
K→+∞

lim sup
ν→+∞

EP ν[(
gν(sν(ξ, x), x)

)
I
{
ξ : gν(sν(ξ, x), x) ≥ K

}]
= 0. (43)

Then, EP ν
[f ν ] epi-converges to EP [f ].

Proof. We first verify the assumptions of Theorem 3.3 for the integrands given by
f(ξ, x) = g(s(ξ, x), x) and f ν(ξ, x) = gν(sν(ξ, x), x). The continuity properties from
assumption (i) confirm assumption (i) in Theorem 3.3. Assumptions (ii) and (iii) of
Theorem 3.3 hold by our assumptions (ii) and (iii), respectively.
Second, we consider the remaining assumptions of Theorem 3.7 with xν = x and
EP [g(s(ξ, x), x)] < +∞. Assumption (i) of Theorem 3.7 holds by our assumption
(iv).



932 E. A. Feinberg, P. O. Kasyanov, J. O. Royset / Epi-Convergence ...

For P -a.e. ξ ∈ Ξ, our assumption (iii) implies that

lim sup
(ν,ζ)→(+∞,ξ)

gν
(
sν(ζ, x), x

)
≥ g

(
s(ξ, x), x

)
.

Thus, Assumption (ii) of Theorem 3.7 holds and the theorem applies.

4.4. Expectation constraints

While an expectation function might arise as the (effective) objective function in an
optimization problem, and then the study of epi-convergence of its approximations
becomes directly relevant, we may also have expectation functions arising as con-
straint functions. Still, epi-convergence remains a key tool and we again leverage
Theorem 3.7.
For continuous f0 : X → R, integrands {f, f ν : Ξ×X → R, ν ∈ N}, and probabilities
{P, P ν , ν ∈ N} on (Ξ,B(Ξ)), suppose that we are faced with the problem

minimize
x∈X

ϕ(x) := f0(x) + ι(−∞,0]

(
EP [f ](x)

)
.

The expectation function needs to be approximated by EP ν
[f ν ]. Suppose that the

assumptions of Theorem 3.7 holds so that EP ν
[f ν ] epi-converges to EP [f ]. Then,

the approximating problem

minimize
x∈X

ϕν(x) := f0(x) + θν max
{
0, EP ν

[f ν ](x)
}

is justified because ϕν epi-converges to ϕ under the assumption that the scalar
θν → +∞ and the following constraint qualification holds: For each x ∈ X satisfying
EP [f ](x) = 0, there exist points xν ∈ X → x such that EP [f ](xν) < 0.
We see this as follows. It is straightforward to confirm lim inf ν→+∞ ϕν(xν) ≥ ϕ
whenever xν → x. The limit condition in the definition of epi-convergence is con-
firmed by the following argument. Let x ∈ X. Without loss of generality, we assume
that EP [f ](x) ≤ 0. There are two cases.
(a) Suppose that EP [f ](x) < 0. Since EP ν

[f ν ] epi-converges to EP [f ], there exist
points xν → x such that lim sup

ν→+∞
EP ν

[f ν ](xν) ≤ EP [f ](x).

Thus, for sufficiently large ν, EP ν
[f ν ](xν) ≤ 0. This means that

lim sup
ν→+∞

ϕν(xν) = lim sup
ν→+∞

f0(x
ν) + lim sup

ν→+∞
θν max

{
0, EP ν

[f ν ](xν)
}

≤ f0(x) = ϕ(x). (44)

(b) Suppose that EP [f ](x) = 0. By assumption, there exist points x̄k ∈ X → x such
that EP [f ](x̄k) < 0 for k ∈ N. Fix k. Since EP ν

[f ν ] epi-converges to EP [f ], there
exist points xν

k → x̄k as ν → +∞ such that

lim sup
ν→+∞

EP ν

[f ν ](xν
k) ≤ EP [f ](x̄k).

Thus, there is νk such that for all ν ≥ νk, EP ν
[f ν ](xν

k) ≤ 0. Without loss of gene-
rality, we assume that νk >νl for k > l. Construct for k ∈N: for νk+1 >ν ≥ νk, set
xν = xνk

k . This produces {xν}∞ν=ν1
with the property xν → x. Moreover, we have

EP ν
[f ν ](xν) = EP ν

[f ν ](xνk
k ) ≤ 0 for some k. Thus, (44) holds again.
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A. Proof of Lemma 3.1

The proof of Lemma 3.1 uses the following properties of the Pasch-Hausdorff enve-
lope.

Lemma A.1. For each κ ∈ [0,+∞) and h : X → R, let hκ be its Pasch-Hausdorff
envelope. Then the following properties are equivalent:
(a) h(x) = +∞ for all x ∈ X;
(b) hκ(x̄) = +∞ for some x̄ ∈ X;
(c) hκ(x) = +∞ for all x ∈ X.

Proof. The proof follows directly from the definition of the Pasch-Hausdorff enve-
lope in (1).

Proof of Lemma 3.1. Let us set, for ν ∈ N and for x ∈ X,

hν(x) := EP ν

[f ν ](x). (45)

If there exists ν0 ∈ N such that hν(y) = +∞ for all ν ≥ ν0 and for all y ∈ X,
then, according to Lemma A.1(a,c), hν

κ(y) = +∞ for all y ∈ X, where hν
κ is the

Pasch-Hausdorff envelope of hν . In this case, the conclusions of Lemma 3.1 hold.
Otherwise, for each ν0 ∈ N there exists ν > ν0 such that hν(yν) < +∞ for some
yν ∈ X. In this case, due to Lemma A.1(a,b), hν

κ(x) < +∞ for all x ∈ X and for all
κ ∈ (0,+∞). Therefore, for each x ∈ X

EP ν[
f ν
κ

]
(x) = EP ν

[
inf
y∈X

{
f ν(ξ, y) + κdX(y, x)

}]
≤ inf

y∈X
EP ν[

f ν(ξ, y) + κdX(y, x)
]

= inf
y∈X

{hν(y) + κdX(y, x)} = hν
κ(x), (46)

where the first equality follows from the definition of
f ν
κ (ξ, x) = inf

y∈X
{f ν(ξ, y) + κdX(y, x)},

which is B̂ν(Ξ)-measurable in ξ in view of [16, Proposition 4.2], the inequality holds
because the expectation of the measurable infimum is not greater than the infimum
of the expectation, the second equality follows from (45), and the last equality follows
from (1).
Fix an arbitrary x0 ∈ X. Inequalities (46) and (6) imply that for each κ ∈ [κ0,+∞)

−∞ < EP
[
fκ
]
(x0) ≤ lim inf

ν→+∞
hν
κ(x0). (47)

Therefore, there exist ν(x0) ∈ N and γ(x0) ∈ (0,+∞) such that

−∞ < −γ(x0) ≤ hν
κ(x0) for each ν ≥ ν(x0) and for each κ ≥ κ0. (48)

Since (47) implies (4), then, according to (5),

lim inf
(ν,y)→(+∞,x)

hν(y) = sup
κ∈N

lim inf
ν→+∞

hν
κ(x) for each x ∈ X. (49)
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We fix an arbitrary κ > κ0 and prove that either the function x 7→ lim inf ν→+∞ hν
κ(x)

is identically equals to +∞ or it is real-valued and Lipschitz continuous with modulus
κ. Indeed, let

lim inf
ν→+∞

hν
κ(x̃) < +∞ for some x̃ ∈ X. (50)

For x ∈ X we set I(x) := {ν ∈ N : ν ≥ ν(x0) and hν
κ(x) < +∞}.

Due to Lemma A.1(b,c), I := I(x) = I(y) for all x, y ∈ X. Moreover, (50) im-
plies that I is an infinite set. Therefore, there exists a strictly increasing sequence
{νm}m∈N ⊂ N such that I = {νm : m ∈ N} and

lim inf
ν→+∞

hν
κ(x) = lim inf

m→+∞
hνm
κ (x) (51)

for each x ∈ X. Therefore, the definition of I, (48), and (3) imply that each function
hνm
κ , m ∈ N, is real-valued and Lipschitz continuous with modulus κ. Therefore,

−∞ < hνm
κ (y)− κdX(x, y) ≤ hνm

κ (x) ≤ hνm
κ (y) + κdX(x, y) < +∞ (52)

for each x, y ∈ X. Setting y = x0 in (52) and passing to the lower limit as m → +∞
in the second inequality, we obtain that

−∞ < lim inf
m→+∞

hνm
κ (x0)− κdX(x, x0) ≤ lim inf

m→+∞
hνm
κ (x) (53)

for each x ∈ X, where the first inequality follows from (47). Similarly, setting y = x̃
in (52) and passing to the lower limit as m → +∞ in the third inequality, we obtain
that

lim inf
m→+∞

hνm
κ (x) ≤ lim inf

m→+∞
hνm
κ (x̃) + κdX(x, x̃) < +∞ (54)

for each x ∈ X, where the second inequality follows from (50). Finally, (51), (53)
and (54) imply that, under (50), the function x 7→ lim inf ν→+∞ hν

κ(x) is real-valued.
Moreover, if we pass to the lower limit as m → +∞ in the second and the third
inequalities of (52) for each x, y ∈ X and use equality (51) in each summand, then
we obtain that the function x 7→ lim inf ν→+∞ hν

κ(x) is Lipschitz continuous with
modulus κ.
If the function x 7→ lim inf ν→+∞ hν

κ(x) is identically equal to +∞, then, according to
(49), the conclusions of Lemma 3.1 hold. To finish the proof let us consider the case,
when the function x 7→ lim inf ν→+∞ hν

κ(x) is real-valued and Lipschitz continuous
with modulus κ.
Let us prove that the function EP [fκ] is real-valued and Lipschitz continuous with
modulus κ. Indeed, since lim inf ν→+∞ hν

κ(x0) < +∞, then inequalities (47) imply
that EP

[
fκ
]
(x0) is a real number. Thus,

fκ(ξ, x0) is finite for P -a.e. ξ ∈ Ξ. (55)

Therefore, according to (3), for P -a.e. ξ ∈ Ξ the function x 7→ fκ(ξ, x) is real-valued
and Lipschitz continuous with modulus κ, that is,

fκ(ξ, y)− κdX(x, y) ≤ fκ(ξ, x) ≤ fκ(ξ, y) + κdX(x, y) (56)

for each x, y ∈ X.
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The function EP [fκ] is real-valued because

−∞ < EP
[
fκ
]
(x0)− κdX(x, x0) ≤ EP

[
fκ
]
(x) ≤ EP

[
fκ
]
(x0) + κdX(x, x0) < +∞,

where the first and the last inequalities hold because EP [fκ](x0) is a real number,
and the second and the third inequalities follow from inequalities (56) with y = x0

if we take the expectation EP of them. Now let us take the expectation EP of (56)
for each x, y ∈ X. We obtain that the function EP [fκ](x) is Lipschitz continuous
with modulus κ.
The second inequality in (47) holds for each x ∈ X because both sides of this
inequality are real-valued and Lipschitz with modulus κ. Therefore,

−∞ < sup
κ∈N

EP
[
fκ
]
(x) ≤ sup

κ∈N
EP

[
fκ
]
(x) = lim inf

(ν,y)→(+∞,x)
EP ν

[f ν ](x) (57)

for each x ∈ X, where the equality follows from (49) and (45). Moreover, (55), (2)
with h := f(ξ, · ), and lsc of f(ξ, · ) for P -a.e. ξ ∈ Ξ imply that fκ(ξ, x) ↑ f(ξ, x)
for each x ∈ X and for P -a.e. ξ ∈ Ξ. Therefore, the first inequality in (57) and the
monotone convergence theorem imply

sup
κ∈N

EP
[
fκ
]
(x) = EP

[
f
]
(x) for each x ∈ X. (58)

Finally, (57)–(58) imply that lim inf (ν,y)→(+∞,x) E
P ν
[f ν ](y) ≥ EP

[
f
]
(x) > −∞.
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