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Abstract. This paper deals with control of partially observable discrete-time stochastic sys-
tems. It introduces and studies Markov Decision Processes with Incomplete Information and with
semiuniform Feller transition probabilities. The important feature of these models is that their
classic reduction to Completely Observable Markov Decision Processes with belief states preserves
semiuniform Feller continuity of transition probabilities. Under mild assumptions on cost functions,
optimal policies exist, optimality equations hold, and value iterations converge to optimal values for
these models. In particular, for Partially Observable Markov Decision Processes the results of this
paper imply new and generalize several known sufficient conditions on transition and observation
probabilities for weak continuity of transition probabilities for Markov Decision Processes with belief
states, the existence of optimal policies, validity of optimality equations defining optimal policies,
and convergence of value iterations to optimal values.
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1. Introduction. In many control problems the state of a controlled system
is not known, and decision makers know only some information about the state.
This takes place in many applications including signal processing, robotics, artificial
intelligence, and medicine. Except for lucky exceptions, and Kalman's filtering is
among them, problems with incomplete information are known to be difficult [30].
The general approach to solving such problems was identified long ago in [1, 2, 9, 41],
and it is based on constructing a controlled system whose states are posterior state
distributions for the original system. These posterior distributions are often called
belief probabilities or belief states. Finding an optimal policy for a problem with
incomplete state observation consists of two steps: (i) finding an optimal policy for
the problem with belief states, and (ii) deriving from this policy an optimal policy for
the original problem. This approach was introduced in [1, 2, 9, 41] for problems with
finite state, observation, and action sets, and it holds for problems with Borel state,
observation, and action sets [34, 46]. If there is no optimal policy for the problem
with belief states, then there is no optimal policy for the original problem.

This paper deals with optimization of expected total discounted costs for discrete-
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time models. We describe a large class of problems, for which optimal policies exist,
satisfy optimality equations, which define optimal policies, and can be found by value
iterations. In particular, this paper provides sufficient conditions for weak continuity
of transition probabilities for models with belief states. For a particular model of Par-
tially Observable Markov Decision Process (POMDP), called POMDP2 in this paper,
the related studies are [19, 24, 28, 37]. As known for a long time, weak continuity
of transition and observation probabilities for problems with incomplete information
does not imply weak continuity of transition probabilities after the reduction to belief
states. Examples are provided in [19].

Weak continuity of transition probabilities for models with belief states is an
important property because these models are Markov Decision Processes (MDPs)
with infinite state spaces. Optimal policies minimizing expected total discounted and
undiscounted costs may not exist for such MDPs. According to [15, Theorem 2], for
MDPs with nonnegative costs and, if the discount factor is less than 1, with bounded
below costs, weak continuity of transition probabilities and \BbbK -inf-compactness of cost
functions imply the existence of Markov optimal policies for finite-horizon problems
and the existence of stationary optimal policies for infinite-horizon problems. Un-
der the mentioned two conditions, optimal policies satisfy optimality equations, and
they can be found by value iteration starting from a zero value. For MDPs with
belief states, \BbbK -inf-compactness of cost functions follows from \BbbK -inf-compactness of
original cost functions [19, Theorem 3.3], and verifying weak continuity of transition
probabilities is a nontrivial matter.

There are several models of controlled systems with incomplete state observations
in the literature. Here we mostly consider a contemporary version of the original
model introduced in [1, 2, 9, 41] and called a Markov Decision Process with Incom-
plete Information (MDPII). In this model the transitions are defined by transition
probabilities P (dwt+1, dyt+1| wt, yt, at), where vectors (wt, yt) represent states of the
system at times t = 0, 1, . . . , wt and yt are unobservable and observable components
of the state (wt, yt), and at are actions. In more contemporary studies the research
focus switched to POMDPs. As was observed in [33], there are two different POMDP
models in the literature, which we call POMDP1 and POMDP2. For problems with fi-
nite state, observation, and control states, Platzman [33] introduced a ``plant"" model,
which we adapt to problems with general state, observation, and control spaces and
call Platzman's model. This model is more general than POMDP1 and POMDP2; see
Figure 1.1.

Platzman's model is a particular case of an MDPII when the transition proba-
bility does not depend on observations. In other words, the transition probability in
Platzman's model is P (dwt+1, dyt+1| wt, at). POMDPi, i = 1, 2, are Platzman's mod-
els whose transition probabilities have special structural properties. These proper-
ties are P (dwt+1, dyt+1| wt, at) = Q1(dyt+1| wt, at) P1(dwt+1| wt, at) for POMDP1 and
P (dwt+1, dyt+1| wt, at) = Q2(dyt+1| at, wt+1)P2(dwt+1| wt, at) for POMDP2, where Pi

and Qi, i = 1, 2, are transition and observation kernels, respectively. Figure 1.1
illustrates the relations between definitions of these four models based on the general-
ity of the transition probabilities P (dwt+1, dyt+1| wt, yt, at). In particular, references
[29, 43, 44] considered POMDP1, and references [19, 24, 28] considered POMDP2.

Belief-MDPs for MDPIIs are called Markov Decision Processes with Complete
Information (MDPCIs) in this paper. As mentioned above, the reduction of an MDPII
with Borel state, action, and observation sets to an MDPCI was introduced in [34, 46].
The reduction of a POMDP2 to a completely observable belief-MDP is described
in [24, Chapter 4]. The reduction of an MDPII to a POMDP2 described in [19, section
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2490 FEINBERG, KASYANOV, AND ZGUROVSKY

Fig. 1.1. Relations between models of partially observable controlled Markov processes. Platz-
man's model is defined as a particular case of an MDPII. POMDP1 and POMDP2 are defined as
particular cases of Platzman's model.

8.3] and the reduction of a POMDP2 to a completely observable belief-MDP described
in [24, Chapter 4] also imply the reduction of an MDPII to an MDPCI.

This paper introduces the class of MDPIIs with semiuniform Feller transition
probabilities. Theorem 6.2 states that an MDPII has a transition probability from
this class if and only if the transition probability of the corresponding MDPCI also
belongs to this class. Theorem 6.1 states similar results under more general condi-
tions, which imply weaker continuity properties of value functions than the properties
described in Theorem 6.2. In view of Lemma 4.2, semiuniform Feller transition prob-
abilities are weakly continuous. In addition, under mild conditions on cost functions
described in section 5, there are optimal policies for MDPs with semiuniform Feller
transition probabilities. This paper provides several sufficient conditions for the ex-
istence of optimal policies, validity of optimality equations, and convergence of value
iterations. In particular, the general theory implies the following sufficient conditions
for weak continuity of transition probabilities for completely observable belief-MDPs
corresponding to POMDPs: (i) Pi is weakly continuous and Qi is continuous in total
variation for a POMDPi, i = 1, 2 (for i = 2 this result was established in [19]); (ii) P2

is continuous in total variation and Q2 is continuous in total variation in the control
parameter; sufficiency of continuity of P2 in total variation was established in [28] for
uncontrolled observation kernels, that is, Q2(yt+1| at, wt+1) = Q2(yt+1| wt+1).

Section 2 describes MDPIIs with expected total costs, and section 3 describes
their classic reduction to an MDPCI. Section 4 introduces semiuniform Feller sto-
chastic kernels and it provides the properties of semiuniform Feller stochastic kernels.
In particular, Lemma 4.2 states that semiuniform Feller stochastic kernels are weakly
continuous. Semiuniform Feller stochastic kernels were introduced and studied in [21],
and some of the statements of section 4 are taken from there. The basic known facts
regarding the reduction of MDPIIs to MDPCIs are that this reduction preserves Borel
measurability of transition probabilities [34, 46], but it does not preserve weak con-
tinuity of transition probabilities [19, Examples 4.1 and 4.3]. Section 5 describes the
theory of MDPs with the expected total costs and semiuniform Feller transition prob-
abilities. Theorem 5.3 establishes the validity of optimality equations, convergence
of value iterations to optimal values, existence of Markov optimal policies for finite
horizon problems, and existence of stationary optimal policies for infinite-horizon
problems. Related facts for MDPs with weakly and setwise continuous transition
probabilities are [15, Theorem 2] and [13, Theorem 3.1], respectively. MDPs with
weakly and setwise continuous transition probabilities and with compact action sets
were introduced and studied by Sch\"al [38, 39, 40]. Balder [3] described a common
approach to these models. MDPs with weakly and setwise continuous transition
probabilities and possibly noncompact action sets were studied in [15] and [13, 25],
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respectively. Weak continuity of transition probabilities is broadly used for problems
with incomplete information, as described in this paper, and for inventory control [12].
Section 6 describes the results on the validity of optimality equations, convergence
of value iterations to optimal values, and the existence of optimal policies for belief-
MDPs corresponding to MDPIIs, Platzman's model, and POMDPs. Proofs of several
statements are presented in Appendix A.

Platzman's model in [33], references [19, 24, 43, 44] on POMDPs, and some pa-
pers on MDPIIs including [34] considered one-step costs depending only on the un-
observable states and actions. References [10, 19, 46] studied MDPIIs with one-step
costs depending on unobservable states, observations, and actions. In this paper we
consider one-step costs depending on unobservable states, observations, and actions.
Because of this, we consider in this paper more general POMDP models than are
usually considered in the literature. However, as shown in section 6, if one-step costs
do not depend on observations, our results imply the known and new results for the
classic Platzman's model [33] and POMDPs [19, 24, 43, 44] with belief-MDPs having
smaller state spaces \BbbP (\BbbW ) than state spaces \BbbP (\BbbW ) \times \BbbY for MDPCIs corresponding
to Platzman's models, to POMDPs with one-step costs depending on observations,
and to MDPIIs. In general, costs may depend on observations in applications. For
example, for healthcare decisions during pandemics, costs depend not only on the
health conditions of all the members of the population, which may be unknown, but
also on the numbers of people with detected infections and on their conditions.

2. Model description. For a metric space \BbbS = (\BbbS , \rho \BbbS ), where \rho \BbbS is a metric, let
\tau (\BbbS ) be the topology of \BbbS (the family of all open subsets of \BbbS ), and let \scrB (\BbbS ) be its
Borel \sigma -field, that is, the \sigma -field generated by all open subsets of the metric space \BbbS .
For a subset S of \BbbS , let \=S denote the closure of S and So the interior of S. Then
So \subset S \subset \=S, So is open, and \=S is closed. Let \partial S := \=S \setminus So denote the boundary
of S. We denote by \BbbP (\BbbS ) the set of probability measures on (\BbbS ,\scrB (\BbbS )). A sequence
of probability measures \{ \mu (n)\} n=1,2,... from \BbbP (\BbbS ) converges weakly to \mu \in \BbbP (\BbbS ) if for
every bounded continuous function f on \BbbS ,\int 

\BbbS 
f(s)\mu (n)(ds) \rightarrow 

\int 
\BbbS 
f(s)\mu (ds) as n \rightarrow \infty .

A sequence of probability measures \{ \mu (n)\} n=1,2,... from \BbbP (\BbbS ) converges in total varia-
tion to \mu \in \BbbP (\BbbS ) if

(2.1) sup
C\in \scrB (\BbbS )

| \mu (n)(C) - \mu (C)| \rightarrow 0 as n \rightarrow \infty ;

see [18, 20] for properties of these types of convergence of probability measures. Note
that \BbbP (\BbbS ) is a separable metric space with respect to the topology of weak convergence
for probability measures, when \BbbS is a separable metric space; see [32, Chapter II].
Moreover, according to Bogachev [7, Theorem 8.3.2], if the metric space \BbbS is separable,
then the topology of weak convergence of probability measures on (\BbbS ,\scrB (\BbbS )) coincides
with the topology generated by the Kantorovich--Rubinshtein metric

\rho \BbbP (\BbbS )(\mu , \nu )(2.2)

:= sup

\biggl\{ \int 
\BbbS 
f(s)\mu (ds) - 

\int 
\BbbS 
f(s)\nu (ds)

\bigm| \bigm| \bigm| f \in Lip1(\BbbS ), sup
s\in \BbbS 

| f(s)| \leq 1

\biggr\} 
,

\mu , \nu \in \BbbP (\BbbS ), where

Lip1(\BbbS ) := \{ f : \BbbS \rightarrow \BbbR , | f(s1) - f(s2)| \leq \rho \BbbS (s1, s2) \forall s1, s2 \in \BbbS \} .
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2492 FEINBERG, KASYANOV, AND ZGUROVSKY

For a Borel subset S of a metric space (\BbbS , \rho \BbbS ), we always consider the metric space
(S, \rho S), where \rho S := \rho \BbbS 

\bigm| \bigm| 
S\times S

. A subset B of S is called open (closed) in S if B is open

(resp., closed) in (S, \rho S). Of course, if S = \BbbS , we omit ``in \BbbS ."" Observe that, in general,
an open (closed) set in S may not be open (resp., closed). For S \in \scrB (\BbbS ) we denote
by \scrB (S) the Borel \sigma -field on (S, \rho S). Observe that \scrB (S) = \{ S \cap B : B \in \scrB (\BbbS )\} .

For metric spaces \BbbS 1 and \BbbS 2, a (Borel measurable) stochastic kernel \Psi (ds1| s2)
on \BbbS 1 given \BbbS 2 is a mapping \Psi ( \cdot | \cdot ) : \scrB (\BbbS 1) \times \BbbS 2\rightarrow [0, 1], such that \Psi ( \cdot | s2) is a
probability measure on \BbbS 1 for any s2 \in \BbbS 2, and \Psi (B| \cdot ) is a Borel measurable function
on \BbbS 2 for any Borel set B \in \scrB (\BbbS 1). Another name for a stochastic kernel is a transition
probability. A stochastic kernel \Psi (ds1| s2) on \BbbS 1 given \BbbS 2 defines a Borel measurable
mapping s2 \mapsto \rightarrow \Psi ( \cdot | s2) of \BbbS 2 to the metric space \BbbP (\BbbS 1) endowed with the topology
of weak convergence. A stochastic kernel \Psi (ds1| s2) on \BbbS 1 given \BbbS 2 is called weakly
continuous (continuous in total variation) if \Psi ( \cdot | s(n)) converges weakly (in total
variation) to \Psi ( \cdot | s) whenever s(n) converges to s in \BbbS 2. For one-point sets \{ s1\} \subset \BbbS 1,
we sometimes write \Psi (s1| s2) instead of \Psi (\{ s1\} | s2). Sometimes a weakly continuous
stochastic kernel is called Feller, and a stochastic kernel continuous in total variation
is called uniformly Feller [31].

Let \BbbS 1,\BbbS 2, and \BbbS 3 be Borel subsets of Polish spaces (a Polish space is a complete
separable metric space), and let \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 be a stochastic kernel. For
each A \in \scrB (\BbbS 1), B \in \scrB (\BbbS 2), and s3 \in \BbbS 3, let

(2.3) \Psi (A,B| s3) := \Psi (A\times B| s3).

In particular, we consider marginal stochastic kernels \Psi (\BbbS 1, \cdot | \cdot ) on \BbbS 2 given \BbbS 3 and
\Psi ( \cdot ,\BbbS 2| \cdot ) on \BbbS 1 given \BbbS 3.

A Markov Decision Process with Incomplete Information (MDPII) (Dynkin and
Yushkevich [10, Chapter 8], Rhenius [34], Yushkevich [46]; see also Rieder [35] and
B\"auerle and Rieder [4] for a version of this model with transition probabilities having
densities) is specified by a tuple (\BbbW \times \BbbY ,\BbbA , P, c), where

(i) \BbbW \times \BbbY is the state space, where \BbbW and \BbbY are Borel subsets of Polish spaces,
and for (w, y) \in \BbbW \times \BbbY the unobservable component of the state (w, y) is w,
and the observable component is y;

(ii) \BbbA is the action space, which is assumed to be a Borel subset of a Polish space;
(iii) P is a stochastic kernel on \BbbW \times \BbbY given \BbbW \times \BbbY \times \BbbA , which determines the

distribution P ( \cdot | w, y, a) on \BbbW \times \BbbY of the new state if (w, y) \in \BbbW \times \BbbY is
the current state, and if a \in \BbbA is the current action, and it is assumed that
the stochastic kernel P on \BbbW \times \BbbY given \BbbW \times \BbbY \times \BbbA is weakly continuous in
(w, y, a) \in \BbbW \times \BbbY \times \BbbA ;

(iv) P0( \cdot | w) is a stochastic kernel on \BbbY given\BbbW , which determines the distribution
of the observable part y0 of the initial state, which may depend on the value
of unobservable component w0 = w of the initial state;

(v) c : \BbbW \times \BbbY \times \BbbA \rightarrow \BbbR + = [0,+\infty ] is a Borel measurable one-step cost function.
The Markov decision process with incomplete information evolves as follows. At

time t = 0, the unobservable component w0 of the initial state has a given prior
distribution p \in \BbbP (\BbbW ). Let y0 be the observable part of the initial state. At each time
epoch t = 0, 1, . . . , if the state of the system is (wt, yt) \in \BbbW \times \BbbY and the decision-
maker chooses an action at \in \BbbA , then the cost c(wt, yt, at) is incurred and the system
moves to state (wt+1, yt+1) according to the transition law P ( \cdot | wt, yt, at).

Define the observable histories: h0 := y0 \in \BbbH 0 and ht := (y0, a0, y1, a1, . . . , yt - 1,
at - 1, yt) \in \BbbH t for all t = 1, 2, . . . , where \BbbH 0 := \BbbY and \BbbH t := \BbbH t - 1 \times \BbbA \times \BbbY if
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t = 1, 2, . . . . Then a policy for the MDPII is defined as a sequence \pi = \{ \pi t\} such
that, for each t = 0, 1, . . . , \pi t is a transition kernel on \BbbA given \BbbH t. Moreover, \pi 
is called nonrandomized if each probability measure \pi t( \cdot | ht) is concentrated at one
point. The set of all policies is denoted by \Pi . The Ionescu Tulcea theorem (Bertsekas
and Shreve [5, pp. 140--141] or Hern\'andez-Lerma and Lasserre [26, p. 178]) implies
that a policy \pi \in \Pi , initial distribution p \in \BbbP (\BbbW ), and initial state y0 together with
the transition kernel P determine a unique probability measure P\pi 

p on the set of all
trajectories \BbbH \infty = (\BbbW \times \BbbY \times \BbbA )\infty endowed with the product \sigma -field defined by Borel
\sigma -fields of \BbbW , \BbbY , and \BbbA , respectively. The expectation with respect to this probability
measure is denoted by \BbbE \pi 

p .
Let us specify the performance criterion. For a finite horizon T = 0, 1, . . . , and

for a policy \pi \in \Pi , let the expected total discounted costs be

(2.4) v\pi T,\alpha (p) := \BbbE \pi 
p

T - 1\sum 
t=0

\alpha tc(wt, yt, at), p \in \BbbP (\BbbW ),

where \alpha \geq 0 is the discount factor, v\pi 0,\alpha (p) = 0.
When T = \infty , (2.4) defines an infinite horizon expected total discounted cost,

and we denote it by v\pi \alpha (p). For any function g\pi (p), including g\pi (p) = v\pi T,\alpha (p) and
g\pi (p) = v\pi \alpha (p), define the optimal value g(p) := inf\pi \in \Pi g\pi (p), p \in \BbbP (\BbbW ). For a given
initial distribution p \in \BbbP (\BbbW ) of the initial unobservable component w0, a policy \pi is
called optimal for the respective criterion if g\pi (p) = g(p) for all p \in \BbbP (\BbbW ). A policy
is called T -horizon discount-optimal if g\pi = v\pi T,\alpha , and it is called discount-optimal if
g\pi = v\pi \alpha .

We remark that the standard assumptions on the discount factor are either \alpha \in 
[0, 1) or \alpha \in [0, 1]. However, since we assume that transition probabilities are weakly
continuous and one-step costs are \BbbK -inf-compact or satisfy a relaxed version of \BbbK -inf-
compactness stated in Definition 5.2, the same monotonicity and continuity arguments
apply to \alpha > 0; see the proof of Theorem 3 in [15]. In addition, if \alpha \in [0, 1), then
it is possible to assume that c is bounded from below rather than nonnegative. This
remark also applies to MDPs with setwise continuous transition probabilities P and
measurable cost functions c(x, a), which are inf-compact in variable a; see [13]. Of
course, if \alpha > 1, then for many infinite-horizon problems the objective function is
equal to +\infty . The literature on MDPs with discount factors greater than 1 exists [27].
In particular, discount factors are relevant to opportunity costs and interest rates.
Discount factors greater than 1 are relevant to negative interest rates, which are
offered by some banks in some countries.

We recall that an MDP is defined by its state space, action space, transition
probabilities, and one-step costs. An MDP is a particular case of an MDPII. Formally
speaking, an MDP (\BbbX ,\BbbA , P, c) is an MDPII (\BbbW \times \BbbY ,\BbbA , P, c) with \BbbW being a singelton
and \BbbY = \BbbX , where we follow the convention that \BbbW \times \BbbX = \BbbX in this case. In addition,
for an MDP an initial state is observable. For an MDP we consider an initial state x
instead of the initial pair (P0, p), where p is the probability concentrated on a single
point of which \BbbW consists. For an MDP, a nonrandomized policy is called Markov if
all decisions depend only on the current state and time. A Markov policy is called
stationary if all decisions depend only on current states.

3. Reduction of MDPIIs to MDPCIs. In this section we formulate the well-
known reduction of an MDPII (\BbbW \times \BbbY ,\BbbA , P, c) to a belief-MDP ([5, 10, 26, 34, 46]),
which is called an MDPCI. For epoch t = 0, 1, . . . consider the joint conditional

D
ow

nl
oa

de
d 

08
/3

0/
22

 to
 1

28
.2

30
.2

33
.1

54
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2494 FEINBERG, KASYANOV, AND ZGUROVSKY

probability R(dwt+1dyt+1| zt, yt, at) on the next state (wt+1, yt+1) given the current
state (zt, yt) and the current control action at defined by

(3.1) R(B \times C| z, y, a) :=
\int 
\BbbW 
P (B \times C| w, y, a)z(dw),

B \in \scrB (\BbbW ), C \in \scrB (\BbbY ), (z, y, a) \in \BbbP (\BbbW )\times \BbbY \times \BbbA . According to Bertsekas and Shreve [5,
Proposition 7.27], there exists a stochastic kernel H(z, y, a, y\prime )[ \cdot ] = H( \cdot | z, y, a, y\prime ) on
\BbbW given \BbbP (\BbbW )\times \BbbY \times \BbbA \times \BbbY such that

(3.2) R(B \times C| z, y, a) =
\int 
C

H(B| z, y, a, y\prime )R(\BbbW , dy\prime | z, y, a),

B \in \scrB (\BbbW ), C \in \scrB (\BbbY ), (z, y, a) \in \BbbP (\BbbW )\times \BbbY \times \BbbA . The stochastic kernel H( \cdot | z, y, a, y\prime )
introduced in (3.2) defines a measurable mapping H : \BbbP (\BbbW ) \times \BbbY \times \BbbA \times \BbbY \rightarrow \BbbP (\BbbW ).
Moreover, the mapping y\prime \mapsto \rightarrow H(z, y, a, y\prime ) is defined R(\BbbW , \cdot | z, y, a)-a.s. uniquely for
each triple (z, y, a) \in \BbbP (\BbbW )\times \BbbY \times \BbbA .

Let IB denote the indicator of an event B. The MDPCI is defined as an MDP
with parameters (\BbbP (\BbbW )\times \BbbY ,\BbbA , q, \=c), where

(i) \BbbP (\BbbW )\times \BbbY is the state space;
(ii) \BbbA is the action set available at all states (z, y) \in \BbbP (\BbbW )\times \BbbY ;
(iii) the one-step cost function \=c : \BbbP (\BbbW )\times \BbbY \times \BbbA \rightarrow \BbbR is defined as

(3.3) \=c(z, y, a) :=

\int 
\BbbW 
c(w, y, a)z(dw), z \in \BbbP (\BbbW ), y \in \BbbY , a \in \BbbA ;

(iv) q on \BbbP (\BbbW ) \times \BbbY given \BbbP (\BbbW ) \times \BbbY \times \BbbA is a stochastic kernel which determines
the distribution of the new state as follows: for (z, y, a) \in \BbbP (\BbbW )\times \BbbY \times \BbbA and
for D \in \scrB (\BbbP (\BbbW )) and C \in \scrB (\BbbY ),

(3.4) q(D \times C| z, y, a) :=
\int 
C

I\{ H(z, y, a, y\prime ) \in D\} R(\BbbW , dy\prime | z, y, a);

see Yushkevich [46], Bertsekas and Shreve [5, Corollary 7.27.1, p. 139], or Dynkin
and Yushkevich [10, p. 215] for details. Note that a particular measurable choice of a
stochastic kernel H from (3.2) does not affect the definition of q in (3.4).

There is a correspondence between the policies for an MDPII (\BbbW \times \BbbY ,\BbbA , P, c) and
for the corresponding MDPCI (\BbbP (\BbbW )\times \BbbY ,\BbbA , q, \=c) in the sense that for a policy in one
of these models there exists a policy in another model with the same expected total
costs; see [34, 46] or [24, section 4.3]. In section 6 we provide sufficient conditions for
the existence of an optimal policy in the MDPCI (\BbbP (\BbbW ) \times \BbbY ,\BbbA , q, \=c) in terms of the
assumptions on the initial MDPII (\BbbW \times \BbbY ,\BbbA , P, c) and apply the results to Platzman's
model and POMDPs. In particular, under natural conditions the existence of optimal
policies and validity of optimality equations and value iterations for MDPCIs follow
from Theorem 5.3. For problems with finite and infinite horizons, if \phi is a Markov
optimal policy for the MDPCI, then an optimal policy \pi for the MDPII can be defined
as at = \pi t(ht) = \phi t(zt, yt), where zt is the posterior distribution of the unobservable
component wt of the state xt given the observations ht = (y0, a0, . . . , yt - 1, at - 1, yt),
the initial distribution p of w0, and t > 0. As discussed in section 6, for Platzman's
models and, in particular, for POMDPs, the values of \phi t(zt, yt) can be selected in-
dependent of yt if one-step costs do not depend on observations. For infinite-horizon
MDPs usually there exist stationary optimal policies, and the described scheme ap-
plies to them since stationary policies are Markov.
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4. Semiuniform Feller stochastic kernels and their properties. In this
section we formulate the semiuniform Feller property for stochastic kernels and de-
scribe its basic properties. In particular, Theorem 4.6 provides its equivalent defini-
tions. Theorem 4.8 establishes a necessary and sufficient condition for a stochastic
kernel to be semiuniform Feller. This condition is Assumption 4.7, whose stronger
version was introduced in [18, Theorem 4.4]. Theorem 4.9 describes the preservation
of semiuniform Fellerness under the integration operation.

Let \BbbS 1, \BbbS 2, and \BbbS 3 be Borel subsets of Polish spaces, and let \Psi on \BbbS 1 \times \BbbS 2 given
\BbbS 3 be a stochastic kernel.

Definition 4.1 (Feinberg, Kasyanov, and Zgurovsky [21]). A stochastic kernel

\Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 is semiuniform Feller if, for each sequence \{ s(n)3 \} n=1,2,... \subset \BbbS 3
that converges to s3 in \BbbS 3 and for each bounded continuous function f on \BbbS 1,

(4.1) lim
n\rightarrow \infty 

sup
B\in \scrB (\BbbS 2)

\bigm| \bigm| \bigm| \bigm| \int 
\BbbS 1
f(s1)\Psi (ds1, B| s(n)3 ) - 

\int 
\BbbS 1
f(s1)\Psi (ds1, B| s3)

\bigm| \bigm| \bigm| \bigm| = 0.

We recall that the marginal measure \Psi (ds1, B| s3), s3 \in \BbbS 3, is defined in (2.3).
The term ``semiuniform"" is used in Definition 4.1 because the uniform property holds
in (4.1) only with respect to the second coordinate. If the uniform property holds
with respect to both coordinates, then the stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 is
continuous in total variation, and it is sometimes called uniformly Feller [31].

Lemma 4.2. A semiuniform Feller stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 is
weakly continuous.

Proof. Definition 4.1 implies that for each sequence \{ s(n)3 \} n=1,2,... \subset \BbbS 3 that con-
verges to s3 in \BbbS 3, for each bounded continuous function f on \BbbS 1, and for each
B \in \scrB (\BbbS 2),

lim
n\rightarrow \infty 

\int 
\BbbS 1
f(s1)\Psi (ds1, B| s(n)3 ) =

\int 
\BbbS 1
f(s1)\Psi (ds1, B| s3),

and, in view of Sch\"al [38, Theorem 3.7(iii,viii)], this property implies weak continuity
of \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3.

Let us consider some basic definitions.

Definition 4.3. Let \BbbS be a metric space. A function f : \BbbS \rightarrow \BbbR is called
(i) lower semicontinuous (l.s.c.) at a point s \in \BbbS if lim inf s\prime \rightarrow s f(s

\prime ) \geq f(s);
(ii) upper semicontinuous at s \in \BbbS if  - f is l.s.c. at s;
(iii) continuous at s \in \BbbS if f is both lower and upper semicontinuous at s;
(iv) lower / upper semicontinuous (resp., continuous) (on \BbbS ) if f is lower/upper

semicontinuous (resp., continuous) at each s \in \BbbS .
For a metric space \BbbS , let \BbbF (\BbbS ), \BbbL (\BbbS ), and \BbbC (\BbbS ) be the spaces of all real-valued

functions, all real-valued l.s.c. functions, and all real-valued continuous functions,
respectively, defined on the metric space \BbbS . The following definitions are taken from
[14].

Definition 4.4. A family \ttF \subset \BbbF (\BbbS ) of real-valued functions on a metric space \BbbS 
is called

(i) lower semiequicontinuous at a point s \in \BbbS if lim inf s\prime \rightarrow s inff\in \ttF (f(s
\prime ) - f(s)) \geq 

0;
(ii) upper semiequicontinuous at a point s \in \BbbS if the family \{  - f : f \in \ttF \} is lower

semiequicontinuous at s \in \BbbS ;
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(iii) equicontinuous at a point s \in \BbbS , if \ttF is both lower and upper semiequicontin-
uous at s \in \BbbS , that is, lims\prime \rightarrow s supf\in \ttF | f(s\prime ) - f(s)| = 0;

(iv) lower/upper semiequicontinuous (resp., equicontinuous) (on \BbbS ) if it is lower/
upper semiequicontinuous (resp., equicontinuous) at all s \in \BbbS ;

(v) uniformly bounded (on \BbbS ) if there exists a constant M < +\infty such that
| f(s)| \leq M for all s \in \BbbS and for all f \in \ttF .

Obviously, if a family \ttF \subset \BbbF (\BbbS ) is lower semiequicontinuous, then \ttF \subset \BbbL (\BbbS ).
Moreover, if a family \ttF \subset \BbbF (\BbbS ) is equicontinuous, then \ttF \subset \BbbC (\BbbS ).

4.1. Basic properties of semiuniform Feller stochastic kernels. Let \BbbS 1, \BbbS 2,
and \BbbS 3 be Borel subsets of Polish spaces, and let \Psi on \BbbS 1\times \BbbS 2 given \BbbS 3 be a stochastic
kernel. For each set A \in \scrB (\BbbS 1) consider the family of functions

(4.2) \ttF \Psi A = \{ s3 \mapsto \rightarrow \Psi (A\times B| s3) : B \in \scrB (\BbbS 2)\} 

mapping \BbbS 3 into [0, 1]. Consider the following type of continuity for stochastic kernels
on \BbbS 1 \times \BbbS 2 given \BbbS 3.

Definition 4.5. A stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 is called WTV-
continuous if for each \scrO \in \tau (\BbbS 1) the family of functions \ttF \Psi \scrO is lower semiequicon-
tinuous on \BbbS 3.

Definition 4.4 directly implies that the stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 is
WTV-continuous if and only if for each \scrO \in \tau (\BbbS 1)

(4.3) lim inf
n\rightarrow \infty 

inf
B\in \scrB (\BbbS 2)\setminus \{ \emptyset \} 

\Bigl( 
\Psi (\scrO \times B| s(n)3 ) - \Psi (\scrO \times B| s3)

\Bigr) 
\geq 0,

whenever s
(n)
3 converges to s3 in \BbbS 3.

Since \emptyset \in \scrB (\BbbS 2), (4.3) holds if and only if

(4.4) lim
n\rightarrow \infty 

inf
B\in \scrB (\BbbS 2)

\Bigl( 
\Psi (\scrO \times B| s(n)3 ) - \Psi (\scrO \times B| s3)

\Bigr) 
= 0.

WTV-continuity of the stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 implies continuity in
total variation of its marginal kernel \Psi (\BbbS 1, \cdot | \cdot ) on \BbbS 2 given \BbbS 3 because

lim
n\rightarrow \infty 

sup
B\in \scrB (\BbbS 2)

\bigm| \bigm| \bigm| \Psi (\BbbS 1 \times B| s(n)3 ) - \Psi (\BbbS 1 \times B| s3)
\bigm| \bigm| \bigm| 

= lim
n\rightarrow \infty 

sup
B\in \scrB (\BbbS 2)

\Bigl( 
\Psi (\BbbS 1 \times B| s(n)3 ) - \Psi (\BbbS 1 \times B| s3)

\Bigr) 
= 0,

where the second equality follows from equality (4.4) with \scrO := \BbbS 1 and from \Psi (\BbbS 1 \times 
\BbbS 2| \cdot ) = 1.

Similarly to Parthasarathy [32, Theorem II.6.1], where the necessary and suf-
ficient conditions for weakly convergent probability measures were considered, the
following theorem provides several useful equivalent definitions of the semiuniform
Feller stochastic kernels.

Theorem 4.6 (Feinberg, Kasyanov, and Zgurovsky [21, Theorem 3]). For a
stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 the following conditions are equivalent:

(a) the stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 is semiuniform Feller;
(b) the stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 is WTV-continuous;

(c) if s
(n)
3 converges to s3 in \BbbS 3, then for each closed set C in \BbbS 1
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(4.5) lim
n\rightarrow \infty 

sup
B\in \scrB (\BbbS 2)

\Bigl( 
\Psi (C \times B| s(n)3 ) - \Psi (C \times B| s3)

\Bigr) 
= 0;

(d) if s
(n)
3 converges to s3 in \BbbS 3, then for each A \in \scrB (\BbbS 1) such that \Psi (\partial A,\BbbS 2| s3) =

0,

(4.6) lim
n\rightarrow \infty 

sup
B\in \scrB (\BbbS 2)

| \Psi (A\times B| s(n)3 ) - \Psi (A\times B| s3)| = 0;

(e) if s
(n)
3 converges to s3 in \BbbS 3, then, for each nonnegative bounded l.s.c. function

f on \BbbS 1,

(4.7) lim inf
n\rightarrow \infty 

inf
B\in \scrB (\BbbS 2)

\biggl( \int 
\BbbS 1
f(s1)\Psi (ds1, B| s(n)3 ) - 

\int 
\BbbS 1
f(s1)\Psi (ds1, B| s3)

\biggr) 
= 0;

and each of these conditions implies continuity in total variation of the marginal kernel
\Psi (\BbbS 1, \cdot | \cdot ) on \BbbS 2 given \BbbS 3.

Note that, since \emptyset \in \scrB (\BbbS 2), (4.5) holds if and only if

(4.8) lim sup
n\rightarrow \infty 

sup
B\in \scrB (\BbbS 2)\setminus \{ \emptyset \} 

\Bigl( 
\Psi (C \times B| s(n)3 ) - \Psi (C \times B| s3)

\Bigr) 
\leq 0,

and similar remarks are applicable to (4.6) and (4.7) with the inequality ``\geq "" taking
place in (4.7).

Let us consider the following assumption. According to Feinberg, Kasyanov, and
Zgurovsky [21, Example 1], Assumption 4.7 is weaker than combined assumptions (i)
and (ii) in [18, Theorem 4.4], where the base \tau s3b (\BbbS 1) is the same for all s3 \in \BbbS 3.

Assumption 4.7. Let \Psi be a stochastic kernel on \BbbS 1 \times \BbbS 2 given \BbbS 3, and let for
each s3 \in \BbbS 3 the topology on \BbbS 1 have a countable base \tau s3b (\BbbS 1) such that

(i) \BbbS 1 \in \tau s3b (\BbbS 1);
(ii) for each finite intersection \scrO = \cap k

i=1\scrO i, k = 1, 2, . . . , of sets \scrO i \in \tau s3b (\BbbS 1),
i = 1, 2, . . . , k, the family of functions \ttF \Psi \scrO , defined in (4.2), is equicontinuous
at s3.

Note that Assumption 4.7(ii) holds if and only if for each finite intersection \scrO =
\cap k
i=1\scrO i of sets \scrO i \in \tau s3b (\BbbS 1), i = 1, 2, . . . , k,

(4.9) lim
n\rightarrow \infty 

sup
B\in \scrB (\BbbS 2)

\bigm| \bigm| \bigm| \Psi (\scrO \times B| s(n)3 ) - \Psi (\scrO \times B| s3)
\bigm| \bigm| \bigm| = 0

if s
(n)
3 converges to s3 in \BbbS 3.
Theorem 4.8 shows that Assumption 4.7 is a necessary and sufficient condition

for semiuniform Feller continuity.

Theorem 4.8 (Feinberg, Kasyanov, and Zgurovsky [21, Theorem 4]). The sto-
chastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 is semiuniform Feller if and only if it satisfies
Assumption 4.7.

Now let \BbbS 4 be a Borel subset of a Polish space, and let \Xi be a stochastic kernel on
\BbbS 1 \times \BbbS 2 given \BbbS 3 \times \BbbS 4. Consider the stochastic kernel \Xi \int on \BbbS 1 \times \BbbS 2 given \BbbP (\BbbS 3)\times \BbbS 4
defined by

\Xi \int (A\times B| \mu , s4)(4.10)

:=

\int 
\BbbS 3
\Xi (A\times B| s3, s4)\mu (ds3), A \in \scrB (\BbbS 1), B \in \scrB (\BbbS 2), \mu \in \BbbP (\BbbS 3), s4 \in \BbbS 4.
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We observe that (4.10) becomes (3.1) with \Xi \int := R, \Xi := P, \BbbS 1 := \BbbW , \BbbS 2 := \BbbY ,
\BbbS 3 := \BbbW , and \BbbS 4 := \BbbY \times \BbbA . This is our main motivation for writing (4.10).

The following theorem establishes the preservation of semiuniform Fellerness of
the integration operation in (4.10).

Theorem 4.9 (Feinberg, Kasyanov, and Zgurovsky [21, Theorem 5]). The sto-
chastic kernel \Xi \int on \BbbS 1 \times \BbbS 2 given \BbbP (\BbbS 3)\times \BbbS 4 is semiuniform Feller if and only if \Xi 
on \BbbS 1 \times \BbbS 2 given \BbbS 3 \times \BbbS 4 is semiuniform Feller.

4.2. Continuity properties of posterior distributions. In this subsection
we describe sufficient conditions for semiuniform Feller continuity of posterior distri-
butions. The main result of this section is Theorem 4.11.

Let \BbbS 1, \BbbS 2, and \BbbS 3 be Borel subsets of Polish spaces, and let \Psi on \BbbS 1 \times \BbbS 2 given
\BbbS 3 be a stochastic kernel. By Bertsekas and Shreve [5, Proposition 7.27], there exists
a stochastic kernel \Phi on \BbbS 1 given \BbbS 2 \times \BbbS 3 such that

(4.11) \Psi (A\times B| s3) =
\int 
B

\Phi (A| s2, s3)\Psi (\BbbS 1, ds2| s3), A \in \scrB (\BbbS 1), B \in \scrB (\BbbS 2), s3 \in \BbbS 3.

The stochastic kernel \Phi ( \cdot | s2, s3) on \BbbS 1 given \BbbS 2\times \BbbS 3 defines a measurable mapping
\Phi : \BbbS 2 \times \BbbS 3 \rightarrow \BbbP (\BbbS 1), where \Phi (s2, s3)( \cdot ) = \Phi ( \cdot | s2, s3). According to Bertsekas and
Shreve [5, Corollary 7.27.1], for each s3 \in \BbbS 3 the mapping \Phi ( \cdot , s3) : \BbbS 2 \rightarrow \BbbP (\BbbS 1) is
defined \Psi (\BbbS 1, \cdot | s3)-almost surely uniquely in s2 \in \BbbS 2. Let us consider the stochastic
kernel \phi defined by

\phi (D \times B| s3)(4.12)

:=

\int 
B

I\{ \Phi (s2, s3) \in D\} \Psi (\BbbS 1, ds2| s3), D \in \scrB (\BbbP (\BbbS 1)), B \in \scrB (\BbbS 2), s3 \in \BbbS 3,

where a particular choice of a stochastic kernel \Phi satisfying (4.11) does not affect the
definition of \phi in (4.12).

In models for decision making with incomplete information, \phi is the transition
probability between belief states, which are posterior distributions of states, (3.4).
Continuity properties of \phi play the fundamental role in the studies of models with
incomplete information. Theorem 4.11 characterizes such properties, and this is the
reason for the title of this section. Let us consider the following assumption.

Assumption 4.10. For a stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3, there exists
a stochastic kernel \Phi on \BbbS 1 given \BbbS 2 \times \BbbS 3 satisfying (4.11) such that if a sequence

\{ s(n)3 \} n=1,2,... \subset \BbbS 3 converges to s3 \in \BbbS 3 as n \rightarrow \infty , then there exist a subsequence

\{ s(nk)
3 \} k=1,2,... \subset \{ s(n)3 \} n=1,2,... and a measurable subset B of \BbbS 2 such that

(4.13)

\Psi (\BbbS 1 \times B| s3) = 1 and \Phi (s2, s
(nk)
3 ) converges weakly to \Phi (s2, s3) for all s2 \in B.

In other words, the convergence in (4.13) holds \Psi (\BbbS 1, \cdot | s3)-almost surely.

According to Theorem 9.2.1 from [8] stating the relation between convergence in
probability and almost sure convergence, Assumption 4.10 holds if and only if the

following statement holds: if a sequence \{ s(n)3 \} n=1,2,... \subset \BbbS 3 converges to s3 \in \BbbS 3 as
n \rightarrow \infty , then

(4.14) \rho \BbbP (\BbbS 1)(\Phi (s2, s
(n)
3 ),\Phi (s2, s3)) \rightarrow 0 in probability \Psi (\BbbS 1, ds2| s3),
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where \rho \BbbP (\BbbS 1) is an arbitrary metric that induces the topology of weak convergence
of probability measures on \BbbS 1, and, in particular, \rho \BbbP (\BbbS 1) can be the Kantorovich--
Rubinshtein metric defined in (2.2).

The following theorem, which is the main result of this section, provides necessary
and sufficient conditions for semiuniform Fellerness of a stochastic kernel \phi in terms
of the properties of a given stochastic kernel \Psi . This theorem and the results of
subsection 4.1 provide the necessary and sufficient conditions for the semiuniform
Feller property of the MDPCIs in terms of the conditions on the transition kernel in
the initial model for decision making with incomplete information.

Theorem 4.11. For a stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 the following con-
ditions are equivalent:

(a) the stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3 is semiuniform Feller;
(b) the marginal kernel \Psi (\BbbS 1, \cdot | \cdot ) on \BbbS 2 given \BbbS 3 is continuous in total variation

and Assumption 4.10 holds;
(c) the stochastic kernel \phi on \BbbP (\BbbS 1)\times \BbbS 2 given \BbbS 3 is semiuniform Feller.

Proof. See Appendix A for the proof.

5. Markov decision processes with semiuniform Feller kernels. Let \BbbX W

and \BbbX Y be Borel subsets of Polish spaces. In this section we consider the special
class of MDPs with semiuniform Feller transition kernels, when the state space is
\BbbX := \BbbX W \times \BbbX Y . These results are important for MDPIIs with semiuniform Feller
transition kernels from section 6, where \BbbX W := \BbbP (\BbbW ) and \BbbX Y = \BbbY .

For an \BbbR -valued function f, defined on a nonempty subset U of a metric space \BbbU ,
consider the level sets

(5.1) \scrD f (\lambda ;U) = \{ y \in U : f(y) \leq \lambda \} , \lambda \in \BbbR .

We recall that a function f is inf-compact on U if all the level sets \scrD f (\lambda ;U) are
compact.

For a metric space \BbbU , we denote by \BbbK (\BbbU ) the family of all nonempty compact
subsets of \BbbU .

Definition 5.1 (Feinberg, Kasyanov, and Zadoianchuk [16, Definition 1.1]). A
function u : \BbbS 1 \times \BbbS 2\rightarrow \BbbR is called \BbbK -inf-compact if this function is inf-compact on
K \times \BbbS 2 for each K \in \BbbK (\BbbS 1).

The fundamental importance of\BbbK -inf-compactness is that Berge's theorem stating
lower semicontinuity of the value function holds for possibly noncompact action sets;
see Feinberg, Kasyanov, and Zadoianchuk [16, Theorem 1.2]. In particular, this fact
allows us to consider the MDPII (\BbbW \times \BbbY ,\BbbA , P, c) with a possibly noncompact action
space \BbbA and unbounded one-step cost c and examine convergence of value iterations
for this model in Theorem 6.1, for Platzman's model in Corollaries 6.6 and 6.12, and
for POMDPs in Corollaries 6.10 and 6.11.

Definition 5.2. A Borel measurable function u : \BbbS 1 \times \BbbS 2 \times \BbbS 3\rightarrow \BbbR is called mea-
surable \BbbK -inf-compact on (\BbbS 1 \times \BbbS 3,\BbbS 2) or \BbbM \BbbK (\BbbS 1 \times \BbbS 3,\BbbS 2)-inf-compact if for each
s2 \in \BbbS 2 the function (s1, s3) \mapsto \rightarrow u(s1, s2,s3) is \BbbK -inf-compact on \BbbS 1 \times \BbbS 3.

Consider a discrete-time MDP (\BbbX ,\BbbA , q, c) with a state space \BbbX = \BbbX W \times \BbbX Y , an
action space \BbbA , one-step costs c, and transition probabilities q. Assume that \BbbX W ,\BbbX Y ,
and \BbbA are Borel subsets of Polish spaces. Let LW (\BbbX ) be the class of all nonnegative
Borel measurable functions \varphi : \BbbX \rightarrow \BbbR such that w \mapsto \rightarrow \varphi (w, y) is l.s.c. on \BbbX W for each

D
ow

nl
oa

de
d 

08
/3

0/
22

 to
 1

28
.2

30
.2

33
.1

54
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2500 FEINBERG, KASYANOV, AND ZGUROVSKY

y \in \BbbX Y . For any \alpha \geq 0 and u \in LW (\BbbX ), we consider

(5.2) \eta \alpha u (x, a) = c(x, a) + \alpha 

\int 
\BbbX 
u(\~x)q(d\~x| x, a), (x, a) \in \BbbX \times \BbbA .

The following theorem is the main result of this section. It states the validity of
optimality equations, convergence of value iterations, and existence of optimal policies
for MDPs with semiuniform Feller transition probabilities and \BbbM \BbbK (\BbbW \times \BbbA ,\BbbY )-inf-
compact one-step cost functions, when the goal is to minimize expected total costs.
For MDPs with weakly continuous transition probabilities the similar result is [15,
Theorem 2], and for MDPs with setwise continuous transition probabilities the similar
result is [13, Theorem 3.1]. Theorem 5.3 does not follow from these two results.
In particular, the cost function is lower semicontinuous in [15, Theorem 2]. The
corresponding assumption for Theorem 5.3 would be lower semicontinuity of the cost
function c, but the function c(w, y, a) may not be l.s.c. in y. Reference [13, Theorem
3.1] assumes setwise continuity of the transition probability q in the control parameter,
which may not hold in this paper. Theorem 5.3 is applied in Theorem 6.1 to MDPCIs
(\BbbP (\BbbW )\times \BbbY ,\BbbA , q, \=c).

Theorem 5.3 (expected total discounted costs). Let us consider an MDP
(\BbbX ,\BbbA , q, c) with \BbbX = \BbbX W \times \BbbX Y , for each y \in \BbbX Y the stochastic kernel q( \cdot | \cdot , y, \cdot ) on
\BbbX given \BbbX W \times \BbbA being semiuniform Feller, and the nonnegative function c : \BbbX \times \BbbA \rightarrow \BbbR 
being \BbbM \BbbK (\BbbX W \times \BbbA ,\BbbX Y )-inf-compact. Then

(i) the functions vt,\alpha , t = 0, 1, . . . , and v\alpha belong to LW (\BbbX ), and vt,\alpha (x) \uparrow v\alpha (x)
as t \rightarrow +\infty for all x \in \BbbX ;

(ii) vt+1,\alpha (x) = mina\in \BbbA \eta \alpha vt,\alpha (x, a), x \in \BbbX , t = 0, 1, . . . , where v0,\alpha (x) = 0 for all
x \in \BbbX , and the nonempty sets At,\alpha (x) := \{ a \in \BbbA : vt+1,\alpha (x) = \eta \alpha vt,\alpha (x, a)\} ,
x \in \BbbX , t = 0, 1, . . . , satisfy the following properties: (a) the graph Gr(At,\alpha ) =
\{ (x, a) : x \in \BbbX , a \in At,\alpha (x)\} , t = 0, 1, . . . , is a Borel subset of \BbbX \times \BbbA , and (b)
if vt+1,\alpha (x) = +\infty , then At,\alpha (x) = \BbbA and if vt+1,\alpha (x) < +\infty , then At,\alpha (x) is
compact;

(iii) for any T = 1, 2, . . . , there exists a Markov optimal T -horizon policy (\phi 0, . . . ,
\phi T - 1), and if for a T -horizon Markov policy (\phi 0, . . . , \phi T - 1) the inclusions
\phi T - 1 - t(x) \in At,\alpha (x), x \in \BbbX , t = 0, . . . , T  - 1, hold, then this policy is T -
horizon optimal;

(iv) v\alpha (x) = mina\in \BbbA \eta \alpha v\alpha (x, a), x \in \BbbX , and the nonempty sets A\alpha (x) := \{ a \in \BbbA :
v\alpha (x) = \eta \alpha v\alpha (x, a)\} , x \in \BbbX , satisfy the following properties: (a) the graph
Gr(A\alpha ) = \{ (x, a) : x \in \BbbX , a \in A\alpha (x)\} is a Borel subset of \BbbX \times \BbbA , and (b) if
v\alpha (x) = +\infty , then A\alpha (x) = \BbbA and if v\alpha (x) < +\infty , then A\alpha (x) is compact;

(v) for an infinite-horizon T = \infty there exists a stationary discount-optimal policy
\phi \alpha , and a stationary policy is optimal if and only if \phi \alpha (x) \in A\alpha (x) for all
x \in \BbbX .

Proof. See Appendix A for the proof.

Remark 5.4. Let us consider an MDP (\BbbX ,\BbbA , q, c) with \BbbX = \BbbX W \times \BbbX Y , the stochas-
tic kernel q on \BbbX given \BbbX \times \BbbA being semiuniform Feller, and the nonnegative function
c : \BbbX \times \BbbA \rightarrow \BbbR being \BbbK -inf-compact. Then, Lemma 4.2 implies that the stochastic
kernel q on \BbbX given \BbbX \times \BbbA is weakly continuous. Therefore, [15, Theorem 2] implies
all assumptions and conclusions of Theorem 5.3 and, in addition, the functions vt,\alpha (\cdot )
and v\alpha (\cdot ) are l.s.c. for all t = 0, 1, . . . and \alpha \geq 0.

We also remark that if the cost function c is nonnegative, then optimality equa-
tions hold and stationary (Markov) optimal policies satisfy them for problems with an
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infinite (finite) horizons without any continuity assumptions on the transition prob-
abilities q and cost function c; see, e.g., [5, Propositions 9.8 and 9.12 and Corollary
9.12.1] for \alpha = 1. This is also true in the following two cases: (a) c, \alpha \geq 0, and (b)
c \geq K >  - \infty and \alpha \in [0, 1). However, if transition probabilities and costs do not
satisfy appropriate continuity assumptions, then min should be replaced with inf in
the optimality equations stated in statements (ii) and (iv) of Theorem 5.3, the sets
At,\alpha (x) and A\alpha (x) can be empty, optimal policies may not exist, and, though a limit
of value iterations with zero terminal costs exists, it may not be equal to the value
function; see Yu [45] and references therein on value iterations for infinite-state MDPs.

6. Total-cost optimal policies for MDPII and corollaries for Platzman's
model and for POMDPs. In this section we formulate Theorems 6.1 and 6.2 stat-
ing the equivalences of semiuniform Feller continuities of the transition probability
P for an MDPII, stochastic kernel R defined in (3.1), and transition probability q
for the MDPCI defined in (3.4). These two theorems also provide other necessary
and sufficient conditions for semiuniform Feller continuity of the stochastic kernels
P, R, and q. The proofs of Theorems 6.1 and 6.2 use Theorems 4.9 and 4.11, the
reduction of MDPIIs to MDPCIs established in [34, 46] and described in section 3,
and [19, Theorem 3.3] stating that integration of cost functions with respect to prob-
ability measures in the argument corresponding to unobservable state variables pre-
serves \BbbK -inf-compactness of cost functions. Then we consider Platzman's model and
POMDPs and describe sufficient conditions for weak continuity of transition kernels
in the reduced models, whose states are belief probabilities, and the validity of op-
timality equations, convergence of value iterations, and existence of optimal policies
for these models.

Theorem 6.1. Let (\BbbW \times \BbbY ,\BbbA , P, c) be an MDPII, (\BbbP (\BbbW )\times \BbbY ,\BbbA , q, \=c) be its MD-
PCI, and y \in \BbbY . Then the following conditions are equivalent:

(a) Assumption 4.7 holds with \BbbS 1 := \BbbW , \BbbS 2 := \BbbY , \BbbS 3 := \BbbW \times \BbbA , and \Psi :=
P ( \cdot | \cdot , y, \cdot );

(b) the stochastic kernel P ( \cdot | \cdot , y, \cdot ) on \BbbW \times \BbbY given \BbbW \times \BbbA is semiuniform Feller;
(c) the stochastic kernel R( \cdot | \cdot , y, \cdot ) on \BbbW \times \BbbY given \BbbP (\BbbW ) \times \BbbA is semiuniform

Feller;
(d) the marginal kernel R(\BbbW , \cdot | \cdot , y, \cdot ) on \BbbY given \BbbP (\BbbW )\times \BbbA is continuous in

total variation, and the stochastic kernel H( \cdot | \cdot , y, \cdot , \cdot ) on \BbbW given \BbbP (\BbbW )\times 
\BbbA \times \BbbY defined in (3.2) satisfies Assumption 4.10;

(e) the stochastic kernel q( \cdot | \cdot , y, \cdot ) on \BbbP (\BbbW )\times \BbbY given \BbbP (\BbbW )\times \BbbA is semiuniform
Feller.

Moreover, if the nonnegative function c is \BbbM \BbbK (\BbbW \times \BbbA ,\BbbY )-inf-compact, and for each
y \in \BbbY anyone of the above conditions (a)--(e) holds, then all the assumptions and
conclusions of Theorem 5.3 hold for the MDPCI (\BbbP (\BbbW )\times \BbbY ,\BbbA , q, \=c).

Theorem 6.2. Let (\BbbW \times \BbbY ,\BbbA , P, c) be an MDPII, and let (\BbbP (\BbbW ) \times \BbbY ,\BbbA , q, \=c) be
its MDPCI. Then the following conditions are equivalent:

(a) Assumption 4.7 holds with \BbbS 1 := \BbbW , \BbbS 2 := \BbbY , \BbbS 3 := \BbbW \times \BbbY \times \BbbA , and \Psi := P ;
(b) the stochastic kernel P on \BbbW \times \BbbY given \BbbW \times \BbbY \times \BbbA is semiuniform Feller;
(c) the stochastic kernel R on \BbbW \times \BbbY given \BbbP (\BbbW )\times \BbbY \times \BbbA is semiuniform Feller;
(d) the marginal kernel R(\BbbW , \cdot | \cdot ) on \BbbY given \BbbP (\BbbW ) \times \BbbY \times \BbbA is continuous in

total variation, and the stochastic kernel H on \BbbW given \BbbP (\BbbW ) \times \BbbY \times \BbbA \times \BbbY 
defined in (3.2) satisfies Assumption 4.10;

(e) the stochastic kernel q on \BbbP (\BbbW )\times \BbbY given \BbbP (\BbbW )\times \BbbY \times \BbbA is semiuniform Feller.
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2502 FEINBERG, KASYANOV, AND ZGUROVSKY

Moreover, if the nonnegative function c is \BbbK -inf-compact, and any one of the above
conditions (a)--(e) holds, then all the assumptions and conclusions of Theorem 5.3
hold for the MDPCI (\BbbP (\BbbW ) \times \BbbY ,\BbbA , q, \=c), and the functions vt,\alpha , t = 0, 1, . . . , and v\alpha 
are l.s.c. on \BbbX .

The proofs of Theorems 6.1 and 6.2 are provided in Appendix A. We recall that
c, \alpha \geq 0 in Theorems 5.3 and 6.1. If 0 \leq \alpha < 1 and the function c is bounded below,
then all conclusions of Theorems 5.3 and 6.1 hold with the following minor modifica-
tions: (i) the functions vt,\alpha and v\alpha are bounded below rather than nonnegative, and
(ii) vt,\alpha (x) \rightarrow v\alpha (x) rather than vt,\alpha (x) \uparrow v\alpha (x) as t \rightarrow \infty . This is true for the function
c bounded below by  - K >  - \infty because such MDPII can be converted into a model
with nonnegative costs by replacing costs c with c + K; see [19]. The suggestion to
fix y in assumptions of Theorems 5.3 and 6.1 was proposed by a referee.

According to [34, 46], for each optimal policy for the MDPCI (\BbbP (\BbbW )\times \BbbY ,\BbbA , q, \=c)
there constructively exists an optimal policy in the original MDPII (\BbbW \times \BbbY ,\BbbA , P, c).
Reference [18, Theorem 4.4] establishes weak continuity of the transition kernel in the
MDPCI under the more restrictive assumption than statement (a) of Theorem 6.1
when the countable base in Assumption 4.7 does not depend on the argument s3 =
(w, y, a); see also [21, Example 1]. Moreover, for any T = 1, 2, . . . and \alpha \geq 0, the
value functions \~VT,\alpha (z, y), \~V\alpha (z, y) in the MDPCI (\BbbP (\BbbW ) \times \BbbY ,\BbbA , q, \=c) are concave in
z \in \BbbP (\BbbW ). This is true because infimums of affine functions are concave functions.

The proof of Theorem 6.1 uses the following preservation property for \BbbM \BbbK (\BbbW \times 
\BbbA ,\BbbY )-inf-compactness.

Theorem 6.3. If c : \BbbW \times \BbbY \times \BbbA \rightarrow \BbbR + is an \BbbM \BbbK (\BbbW \times \BbbA ,\BbbY )-inf-compact function,
then the function \=c : \BbbP (\BbbW ) \times \BbbY \times \BbbA \rightarrow \BbbR + defined in (3.3) is \BbbM \BbbK (\BbbP (\BbbW ) \times \BbbA ,\BbbY )-inf-
compact.

Proof. This theorem follows from [5, Proposition 7.29] on preservation of Borel
measurability and from [19, Theorem 3.3] on preservation of \BbbK -inf-compactness.

The particular case of an MDPII is a probabilistic dynamical system considered
in Platzman [33].

Definition 6.4. Platzman's model is specified by an MDPII (\BbbW \times \BbbY ,\BbbA , P, c),
where P is a stochastic kernel on \BbbW \times \BbbY given \BbbW \times \BbbA .

Remark 6.5. Formally speaking, Platzman's model is an MDPII with the transi-
tion kernel P ( \cdot | w, y, a) that does not depend on y. Therefore, Theorem 6.1 implies
certain corollaries for Platzman's model.

Corollary 6.6. Let (\BbbW \times \BbbY ,\BbbA , P, c) be Platzman's model. Then the stochastic
kernel P on \BbbW \times \BbbY given \BbbW \times \BbbA is semiuniform Feller if and only if one of the
equivalent conditions (a), (c), (d), or (e) of Theorem 6.1 holds. Moreover, if the
nonnegative function c is \BbbM \BbbK (\BbbW \times \BbbA ,\BbbY )-inf-compact and the stochastic kernel P on
\BbbW \times \BbbY given \BbbW \times \BbbA is semiuniform Feller, then all the assumptions and conclusions
of Theorem 6.1 hold.

Proof. According to Remark 6.5, Corollary 6.6 follows directly from Theorem
6.1.

For Platzman's models we shall write P (B\times C| w, a), R(B\times C| z, a), H(D| z, a, y\prime ),
and q(D \times C| z, a) instead of P (B \times C| w, y, a), R(B \times C| z, y, a), H(D| z, y,a, y\prime ), and
q(D \times C| z, y, a) since these stochastic kernels do not depend on the variable y. For
Platzman's models we shall also consider the marginal kernel \^q(D| z, a) := q(D,\BbbY | z, a)
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on \BbbP (\BbbW ) given \BbbP (\BbbW )\times \BbbA . In view of (3.4), for (z, a) \in \BbbP (\BbbW )\times \BbbA and for D \in \scrB (\BbbP (\BbbW )),

(6.1) \^q(D| z, a) :=
\int 
\BbbY 
I\{ H(z, a, y\prime ) \in D\} R(\BbbW , dy\prime | z, a).

Corollary 6.7. Let (\BbbW \times \BbbY ,\BbbA , P, c) be Platzman's model, and let the stochastic
kernel P on \BbbW \times \BbbY given \BbbW \times \BbbA be semiuniform Feller. Then the stochastic kernel \^q
on \BbbP (\BbbW ) given \BbbP (\BbbW )\times \BbbA is weakly continuous.

Proof. According to Corollary 6.6 and Lemma 4.2, the stochastic kernel q on
\BbbP (\BbbW )\times \BbbY given \BbbP (\BbbW )\times \BbbA is weakly continuous. Therefore, its marginal kernel \^q on
\BbbP (\BbbW ) given \BbbP (\BbbW )\times \BbbA is also weakly continuous.

As mentioned in [33], the special cases of Platzman's model include two partially
observable MDPs which we denote as POMDP1 and POMDP2; see Definitions 6.8
and 6.9 and Figure 1.1.

Let i = 1, 2, let \BbbW , \BbbY , and \BbbA be Borel subsets of Polish spaces, let Pi(dw
\prime | w, a)

be a stochastic kernel on \BbbW given \BbbW \times \BbbA , let Q1(dy| w, a) be a stochastic kernel on \BbbY 
given \BbbW \times \BbbA , let Q2(dy| a,w) be a stochastic kernel on \BbbY given \BbbA \times \BbbW , let Q0,i(dy| w)
be a stochastic kernel on \BbbY given \BbbW , and let p be a probability distribution on \BbbW .

Definition 6.8. A POMDP1 (\BbbW ,\BbbY ,\BbbA , P1, Q1, c) is specified by Platzman's model
(\BbbW \times \BbbY ,\BbbA , P, c) with

(6.2) P (B \times C| w, a) := P1(B| w, a)Q1(C| w, a),

B \in \scrB (\BbbW ), C \in \scrB (\BbbY ), w \in \BbbW , y \in \BbbY , a \in \BbbA .
Let (\BbbW ,\BbbY ,\BbbA , P1, Q1, c) be a POMDP1. Then, the stochastic kernel R on \BbbW \times \BbbY 

given \BbbP (\BbbW )\times \BbbA , which is defined for MDPIIs in (3.1), takes the following form:

(6.3) R(B \times C| z, a) :=
\int 
\BbbW 
Q1(C| w, a)P1(B| w, a)z(dw),

B \in \scrB (\BbbW ), C \in \scrB (\BbbY ), z \in \BbbP (\BbbW ), a \in \BbbA .
Definition 6.9. A POMDP2 (\BbbW ,\BbbY ,\BbbA , P2, Q2, c) is specified by Platzman's model

(\BbbW \times \BbbY ,\BbbA , P, c) with

(6.4) P (B \times C| w, a) :=
\int 
B

Q2(C| a,w\prime )P2(dw
\prime | w, a),

B \in \scrB (\BbbW ), C \in \scrB (\BbbY ), w \in \BbbW , y \in \BbbY , a \in \BbbA .
We recall that Figure 1.1 describes the relations between an MDPII, Platzman's

model, POMDP1, and POMDP2 based on the generality of transition probabilities
P. In addition, POMDP1 and POMDP2 are two different models. For example, for
a POMDP1 the random variables wt+1 and yt+1 are conditionally independent given
the values wt and at. This is not true for POMDP2.

Other relations between these models also take place. In particular, a reduction of
an MDPII to a POMDP2 is described in [18, section 6] and in [19, section 8.3]. There-
fore, in some sense an MDPII, Platzman's model, and a POMDP2 can be viewed as
equivalent models. This reduction was used in [19] to prove Theorem 8.1 there stat-
ing sufficient conditions for weak continuity of transition probabilities for MDPCIs.
This reduction transforms an MDPII with a weakly continuous transition probabil-
ity into a POMDP2 with weakly continuous transition and observation probabilities.
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Since weak continuity of transition and observation probabilities for POMDP2 are not
sufficient for continuity of transition probabilities for the corresponding belief-MDP
(see [19, Example 4.1]), [19, Theorem 8.1] contains an additional assumption on the
transition probability P of the MDPII. This assumption is relaxed in [18, Theorem
6.2]. As shown in [21, Example 1], semiuniform Feller continuity of the transition
probability P assumed in this paper is a more general property than the assumption
on P in [18, Theorem 6.2].

For a POMDP2 (\BbbW ,\BbbY ,\BbbA , P2, Q2, c) the stochastic kernel R on\BbbW \times \BbbY given \BbbP (\BbbW )\times 
\BbbA , which is defined for MDPIIs in (3.1), takes the following form:

(6.5) R(B \times C| z, a) :=
\int 
\BbbW 

\int 
B

Q2(C| a,w\prime )P2(dw
\prime | w, a)z(dw),

B \in \scrB (\BbbW ), C \in \scrB (\BbbY ), z \in \BbbP (\BbbW ), a \in \BbbA . A POMDP1 is Platzman's model with obser-
vations yt+1 being ``random functions"" of wt and at, and a POMDP2 is Platzman's
model with observations yt+1 being ``random functions"" of at and wt+1. Let us apply
Theorem 6.1 to a POMDP1 and POMDP2.

Corollary 6.6 establishes necessary and sufficient conditions for semiuniform Feller
continuity of the transition probabilities P for Platzman's model (\BbbW \times \BbbY ,\BbbA , P, c) in
terms of the same property for the transition probabilities q of the respective belief-
MDP (\BbbP (\BbbW )\times \BbbY ,\BbbA , q, \=c). Since a POMDPi, i = 1, 2, is a particular case of Platzman's
model, Corollary 6.6 implies the necessary and sufficient conditions for semiuniform
Feller continuity of the stochastic kernel q on \BbbP (\BbbW )\times \BbbY given \BbbW \times \BbbA in terms of the
same property for the transition probability P defined in (6.2) for a POMDP1 and in
(6.4) for a POMDP2, respectively.

Corollary 6.10. For a POMDP1 (\BbbW ,\BbbY ,\BbbA , P1, Q1, c), the following two condi-
tions hold together:

(a) the stochastic kernel P1 on \BbbW given \BbbW \times \BbbA is weakly continuous;
(b) the stochastic kernel Q1 on \BbbY given \BbbW \times \BbbA is continuous in total variation;

is equivalent to semiuniform Feller continuity of the stochastic kernel P on \BbbW \times \BbbY 
given \BbbW \times \BbbA . Moreover, if these two conditions hold, then the following statements
are true:

(i) statements (a) and (c)--(e) of Theorem 6.1 hold;
(ii) if the nonnegative function c : \BbbW \times \BbbY \times \BbbA \rightarrow \BbbR is \BbbM \BbbK (\BbbW \times \BbbA ,\BbbY )-inf-compact,

then all the conclusions of Theorem 6.1 hold;
(iii) the stochastic kernel \^q on \BbbP (\BbbW ) given \BbbP (\BbbW ) \times \BbbA defined in (6.1) is weakly

continuous.

Proof. See Appendix A for the proof.

Corollary 6.11. For a POMDP2 (\BbbW ,\BbbY ,\BbbA , P2, Q2, c) each of the conditions:
(a) the stochastic kernel P2 on \BbbW given \BbbW \times \BbbA is weakly continuous, and the

stochastic kernel Q2 on \BbbY given \BbbA \times \BbbW is continuous in total variation;
(b) the stochastic kernel P2 on \BbbW given \BbbW \times \BbbA is continuous in total variation,

and the observation kernel Q2 on \BbbY given \BbbA \times \BbbW is continuous in a in total
variation;

implies semiuniform Feller continuity of the stochastic kernel P on \BbbW \times \BbbY given \BbbW \times \BbbA .
Moreover, each of the conditions (a) and (b) implies the validity of conclusions (i)--(iii)
of Corollary 6.10 for the POMDP2.

Proof. See Appendix A for the proof.

Regarding Corollary 6.11, weak continuity of the stochastic kernel \^q on \BbbP (\BbbW )\times \BbbA 
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for a POMDP2 under condition (a) from Corollary 6.11 is stated in [19, Theorem 3.6],
and another proof of this statement is provided in [28, Theorem 1]. Weak continuity
of the stochastic kernel \^q on \BbbP (\BbbW ) \times \BbbA for a POMDP2 under condition (b) from
Corollary 6.11 is an extension of [28, Theorem 2], where this weak continuity is proved
under the assumption that the stochastic kernel P2 on \BbbW given \BbbW \times \BbbA is continuous
in total variation and the observation kernel Q2 does not depend on actions.

Different sufficient conditions for weak continuity of the kernel \^q for a POMDP2

are formulated in monographs [24, 37]. In both cases these conditions are stronger
than condition (a) from Corollary 6.11. In terms of the current paper, weak continuity
of the stochastic kernel \^q on \BbbP (\BbbW ) given \BbbP (\BbbW ) \times \BbbA is stated in [24, p. 92] under
condition (a) from Corollary 6.11 and under the assumption that the observation space
\BbbY is denumerable. The proof in [24, p. 93] is based on the existence of a transition
kernel H(z, a, y\prime ), which is weakly continuous in (z, a, y\prime ) and satisfies (6.1). However,
[19, Example 4] shows that such kernel may not exist even for a POMDP2 with finite
sets \BbbX , \BbbY and continuous in a functions P2(x

\prime | x, a) and Q2(y| a, x). A POMDP2 is
considered in [37, Chapter 2] under additional assumptions that the state space \BbbX 
is locally compact, observations yt belong to a Euclidean space, and the observation
kernel does not depend on actions and has a density, that is, Q(dy| x) = r(x, y)dy.
Weak continuity of the kernel \^q is stated in [37, Corollary 1.5] under four assumptions,
which taken together are stronger than condition (a) in Corollary 6.11.

Let us consider Platzman's model (\BbbW \times \BbbY ,\BbbA , P, c) with the cost function c that
does not depend on observations y, that is, c(w, y, a) = c(w, a). In this case the
MDPCI (\BbbP (\BbbW ) \times \BbbY ,\BbbA , q, \=c) can be reduced to a smaller MDP (\BbbP (\BbbW ),\BbbA , \^q, \^c) with
the state space \BbbP (\BbbW ), action space \BbbA , transition probability \^q defined in (6.1), and
one-step cost function \^c : \BbbP (\BbbW )\times \BbbA \rightarrow \BbbR , defined for z \in \BbbP (\BbbW ) and a \in \BbbA as

(6.6) \^c(z, a) :=

\int 
\BbbW 
c(w, a)z(dw).

The reduction of an MDPCI (\BbbP (\BbbW )\times \BbbY ,\BbbA , q, \=c) to the belief-MDP (\BbbP (\BbbW ),\BbbA , \^q, \^c) holds
in view of [11, Theorem 2] because in the MDPCI transition probabilities from states
(zt, yt) \in \BbbP (\BbbW ) \times \BbbY to states zt+1 \in \BbbP (\BbbW ) and costs c(zt, at) do not depend on yt.
If a Markov or stationary optimal policy is found for the belief-MDP (\BbbP (\BbbW ),\BbbA , \^q, \^c),
it is possible, as described at the end of section 3, to construct an optimal policy for
Platzman's models following the same procedures as constructing an optimal policy
for an MDPII given a Markov or stationary optimal policy for the corresponding
MDPCI.

Corollary 6.12. Let us consider Platzman's model (\BbbW \times \BbbY ,\BbbA , P, c) with the one-
step cost function c : \BbbW \times \BbbA \rightarrow \BbbR +. If the stochastic kernel P on \BbbW \times \BbbY given \BbbW \times \BbbA is
semiuniform Feller, and the one-step cost function c is \BbbK -inf-compact on \BbbW \times \BbbA , then
the transition kernel \^q on \BbbP (\BbbW ) given \BbbP (\BbbW ) \times \BbbA is weakly continuous, the one-step
cost function \^c is \BbbK -inf-compact on \BbbP (\BbbW )\times \BbbA , and all the conclusions of [19, Theorem
2.1] hold for the belief-MDP (\BbbP (\BbbW ),\BbbA , \^q, \^c), that is,

(i) optimality equations hold, and they define optimal policies;
(ii) value iterations converge to optimal values if zero terminal costs are chosen;
(iii) Markov optimal policies exist for finite-horizon problems;
(iv) stationary optimal policies exist for infinite-horizon problems.

Moreover, all these conclusions hold for a POMDP1 (\BbbW ,\BbbY ,\BbbA , P1, Q1, c) with the tran-
sition and observation kernels P1 and Q1 satisfying conditions (a) and (b) from Corol-
lary 6.10 and for a POMDP2 (\BbbW ,\BbbY ,\BbbA , P2, Q2, c) with the transition and observation
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kernels P2 and Q2 satisfying either condition (a) or condition (b) from Corollary 6.11.

Proof. Weak continuity of the stochastic kernel \^q on \BbbP (\BbbW ) given \BbbP (\BbbW ) \times \BbbA is
stated in Corollary 6.7. \BbbK -inf-compactness of the function \^c on \BbbP (\BbbW ) \times \BbbA follows
from [19, Theorem 3.3]. The remaining statements of the corollary follow from [19,
Theorem 2.1]. The transition probability P for POMDP1 (\BbbW ,\BbbY ,\BbbA , P1, Q1, c) defined
in (6.2) is semiuniform Feller according to Corollary 6.10, and the transition proba-
bility P for POMDP2 (\BbbW ,\BbbY ,\BbbA , P2, Q2, c) defined in (6.4) is semiuniform Feller due
to Corollary 6.11.

Appendix A. Proofs of Theorems 4.11, 5.3, and 6.1, and Corollaries 6.10
and 6.11. We use the following fact in the proofs of equalities (A.1) and (A.2)
below: if \{ G(n), G\} n=1,2,... is a sequence of finite measures on a metric space \scrS and
\{ g(n), g\} n=1,2,... is a uniformly bounded sequence of Borel measurable functions on \scrS 
such that

lim
n\rightarrow \infty 

sup
B\in \scrB (\scrS )

\bigm| \bigm| \bigm| \bigm| \int 
B

g(n)(s)G(n)(ds) - 
\int 
B

g(n)(s)G(ds)

\bigm| \bigm| \bigm| \bigm| = 0,

then

lim
n\rightarrow \infty 

sup
B\in \scrB (\scrS )

\bigm| \bigm| \bigm| \bigm| \int 
B

g(n)(s)G(n)(ds) - 
\int 
B

g(s)G(ds)

\bigm| \bigm| \bigm| \bigm| = 0

holds if and only if

lim
n\rightarrow \infty 

sup
B\in \scrB (\scrS )

\bigm| \bigm| \bigm| \bigm| \int 
B

g(n)(s)G(ds) - 
\int 
B

g(s)G(ds)

\bigm| \bigm| \bigm| \bigm| = 0.

Proof of Theorem 4.11. (a) \Rightarrow (b). Since the stochastic kernel \Psi on \BbbS 1 \times \BbbS 2
given \BbbS 3 is semiuniform Feller, the marginal kernel \Psi (\BbbS 1, \cdot | \cdot ) is continuous in total
variation. Moreover, for each bounded continuous function f on \BbbS 1, we have from
(4.1) and (4.11) that

lim
n\rightarrow \infty 

sup
B\in \scrB (\BbbS 2)

\bigm| \bigm| \bigm| \bigm| \int 
B

\int 
\BbbS 1
f(s1)\Phi (ds1| s2, s(n)3 )\Psi (\BbbS 1, ds2| s3)

 - 
\int 
B

\int 
\BbbS 1
f(s1)\Phi (ds1| s2, s3)\Psi (\BbbS 1, ds2| s3)

\bigm| \bigm| \bigm| \bigm| = 0(A.1)

because the family of Borel measurable functions \{ s2 \mapsto \rightarrow 
\int 
\BbbS 1 f(s1)\Phi (ds1| s2, s

(n)
3 ) :

n = 1, 2, . . .\} is uniformly bounded on \BbbS 2 by the same constant as f on \BbbS 1. This is

equivalent to
\int 
\BbbS 1 f(s1)\Phi (ds1| \cdot , s

(n)
3 ) \rightarrow 

\int 
\BbbS 1 f(s1)\Phi (ds1| \cdot , s3) in L1(\BbbS 2,\scrB (\BbbS 2), \nu ) with

\nu ( \cdot ) := \Psi (\BbbS 1, \cdot | s3). Therefore,\int 
\BbbS 1
f(s1)\Phi (ds1| \cdot , s(nk)

3 ) \rightarrow 
\int 
\BbbS 1
f(s1)\Phi (ds1| \cdot , s3) \nu -almost surely, as k \rightarrow \infty ,

for some sequence \{ nk\} k=1,2,... (nk \uparrow \infty as k \rightarrow \infty ). We apply the diagonalization
procedure to extract a subsequence \{ \~nk\} k=1,2,... (\~nk \uparrow \infty as k \rightarrow \infty ) such that\int 

\BbbS 1
g(s1)\Phi (ds1| \cdot , s(\~nk)

3 ) \rightarrow 
\int 
\BbbS 1
g(s1)\Phi (ds1| \cdot , s3) \nu -almost surely, as k \rightarrow \infty ,

for each g \in \scrG , where \scrG is a countable uniformly bounded family of continuous
functions on \BbbS 2 that determines weak convergence of probability measures on \BbbS 2
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according to Parthasarathy [32, Theorem 6.6, p. 47]. Thus, \Phi ( \cdot , s(\~nk)
3 ) converges

weakly to \Phi ( \cdot , s3) \nu -almost surely, and Assumption 4.10 holds.
(b) \Rightarrow (c). Let f be a bounded continuous function on \BbbP (\BbbS 1). Since \Psi (\BbbS 1, \cdot | \cdot ) is

continuous in total variation, to prove that (4.1) holds for the stochastic kernel \phi , it
is sufficient to show that
(A.2)

lim
n\rightarrow \infty 

sup
B\in \scrB (\BbbS 2)

\bigm| \bigm| \bigm| \bigm| \int 
B

f(\Phi (s2, s
(n)
3 ))\Psi (\BbbS 1, ds2| s3) - 

\int 
B

f(\Phi (s2, s3))\Psi (\BbbS 1, ds2| s3)
\bigm| \bigm| \bigm| \bigm| = 0.

For the probability space \Sigma := (\BbbS 2,\scrB (\BbbS 2), \mu ) with \mu ( \cdot ) := \Psi (\BbbS 1, \cdot | s3), the \BbbP (\BbbS 1)-
valued random variables \Phi ( \cdot , s(n)3 )\rightarrow \mu \Phi ( \cdot , s3) as n \rightarrow \infty , according to Assump-
tion 4.10 and (4.14), where \nu (n) \rightarrow \mu \nu denotes the convergence in probability \mu , that

is, \rho \BbbP (\BbbS 1)(\nu 
(n), \nu ) \rightarrow 0 in probability \mu . Then f(\Phi ( \cdot , s(n)3 ))\rightarrow \mu f(\Phi ( \cdot , s3)) because

f is continuous on \BbbP (\BbbS 1). In turn, since f is bounded on \BbbP (\BbbS 1), this implies that

f(\Phi ( \cdot , s(n)3 )) \rightarrow f(\Phi ( \cdot , s3)) in L1(\Sigma ), from which the desired relation (A.2) follows.

(c) \Rightarrow (a). Let a sequence \{ s(n)3 \} n=1,2,... \subset \BbbS 3 converge to s3 \in \BbbS 3 as n \rightarrow 
\infty . Since the stochastic kernel \phi on \BbbP (\BbbS 1) \times \BbbS 2 given \BbbS 3 is semiuniform Feller, for
every nonnegative bounded lower semicontinuous function f on \BbbP (\BbbS 1), according to
Theorem 4.6(a,e),

(A.3) lim inf
n\rightarrow \infty 

inf
B\in \scrB (\BbbS 2)

\Biggl( \int 
\BbbP (\BbbS 1)

f(\mu )\phi (d\mu ,B| s(n)3 ) - 
\int 
\BbbP (\BbbS 1)

f(\mu )\phi (d\mu ,B| s3)

\Biggr) 
= 0.

For each B \in \scrB (\BbbS 2), formula (4.12) establishes the equality of two measures on
(\BbbP (\BbbS 1),\scrB (\BbbP (\BbbS 1))). Therefore, for every Borel measurable nonnegative functions f on
\BbbP (\BbbS 1),

(A.4)

\int 
B

f(\Phi (s2, \~s3))\Psi (\BbbS 1, ds2| \~s3) =
\int 
\BbbP (\BbbS 1)

f(\mu )\phi (d\mu ,B| \~s3), \~s3 \in \BbbS 3.

Let us fix an arbitrary open set \scrO \subset \BbbS 1 and consider nonnegative bounded l.s.c.
function f(\mu ) := \mu (\scrO ), \mu \in \BbbP (\BbbS 1). Then

lim inf
n\rightarrow \infty 

inf
B\in \scrB (\BbbS 2)

\biggl( \int 
B

\Phi (\scrO | s2, s(n)3 )\Psi (\BbbS 1, ds2| s(n)3 ) - 
\int 
B

\Phi (\scrO | s2, s3)\Psi (\BbbS 1, ds2| s3)
\biggr) 

= lim inf
n\rightarrow \infty 

inf
B\in \scrB (\BbbS 2)

\biggl( \int 
B

f(\Phi (s2, s
(n)
3 ))\Psi (\BbbS 1, ds2| s(n)3 )

 - 
\int 
B

f(\Phi (s2, s3))\Psi (\BbbS 1, ds2| s3)
\biggr) 

= 0,

where the first equality follows from the definition of f , and the second equality
follows from (A.4) and from (A.3). Thus, the stochastic kernel \Psi on \BbbS 1 \times \BbbS 2 given \BbbS 3
is WTV-continuous, and therefore it is semiuniform Feller.

Remark A.1. Theorem 4.11 can be proved in multiple ways using equivalent char-
acterizations of semiuniform Feller kernels. The original proofs [22, Proof of Theo-
rem 5.10, pp. 16--20] were based on some of these characterizations, while the current
proofs of (a) \Rightarrow (b) \Rightarrow (c) were suggested by a referee.

The following lemma, Lemma A.2, is useful for establishing continuity properties
of the value functions vn,\alpha (x) and v\alpha (x) in x \in \BbbX stated in Theorem 5.3.
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Lemma A.2. Let the MDP (\BbbX ,\BbbA , q, c) satisfy the assumptions of Theorem 5.3,
and let \alpha \geq 0. Then the function u\ast (x) := infa\in \BbbA \eta \alpha u (x, a), x \in \BbbX , where the func-
tion \eta \alpha u is defined in (5.2), belongs to LW (\BbbX ), and there exists a stationary pol-
icy f : \BbbX \rightarrow \BbbA such that u\ast (x) := \eta \alpha u (x, f(x)), x \in \BbbX . Moreover, the sets A\ast (x) =
\{ a \in \BbbA : u\ast (x) = \eta \alpha u (x, a)\} , x \in \BbbX , which are nonempty, satisfy the following proper-
ties: (a) the graph Gr(A\ast ) = \{ (x, a) : x \in \BbbX , a \in A\ast (x)\} is a Borel subset of \BbbX \times \BbbA ;
(b) if u\ast (x) = +\infty , then A\ast (x) = \BbbA , and if u\ast (x) < +\infty , then A\ast (x) is compact.

Proof. The function (x, a) \mapsto \rightarrow \eta \alpha u (x, a) is nonnegative because c, u, and \alpha are
nonnegative. Therefore, since u is a Borel measurable function, and q is a stochastic
kernel, [5, Proposition 7.29] implies that the function (x, a) \mapsto \rightarrow 

\int 
\BbbX u(\~x)q(d\~x| x, a) is

Borel measurable on \BbbX \times \BbbA , which implies that the function (x, a) \mapsto \rightarrow \eta \alpha u (x, a) is Borel
measurable on \BbbX \times \BbbA because c is Borel measurable.

Let us prove that the function (w, a) \mapsto \rightarrow 
\int 
\BbbX u(\~x)q(d\~x| w, y, a) is l.s.c. on \BbbX W \times \BbbA for

each y \in \BbbX Y . On the contrary, if this function is not l.s.c., then there exist a sequence
\{ (w(n), a(n))\} n=1,2,... \subset \BbbX W \times \BbbA converging to some (w, a) \in \BbbX W \times \BbbA and a constant
\lambda such that for each n = 1, 2, . . .

(A.5)

\int 
\BbbX W\times \BbbX Y

u( \~w, \~y)q(d \~w \times d\~y| w(n), y, a(n)) \leq \lambda <

\int 
\BbbX 
u(\~x)q(d\~x| w, y, a).

According to Theorem 4.11(a,b) applied to \Psi := q, \BbbS 1 := \BbbX W , \BbbS 2 := \BbbX Y , and \BbbS 3 :=
\BbbX W \times \{ y\} \times \BbbA , there exists a stochastic kernel \Phi on \BbbX W given \BbbX Y \times \BbbX W \times \{ y\} \times \BbbA 
such that (4.11) and Assumption 4.10 hold. In particular, (A.5) implies that for each
n = 1, 2, . . .\int 

\BbbX Y

\biggl[ \int 
\BbbX W

u( \~w, \~y)\Phi (d \~w| \~y, w(n), y, a(n))

\biggr] 
q(\BbbX W , d\~y| w(n), y, a(n)) \leq \lambda ,

and there exist a subsequence \{ (w(nk), a(nk))\} k=1,2,... \subset \{ (w(n), a(n))\} n=1,2,... and a
Borel set Y \in \scrB (\BbbX Y ) such that q(\BbbX W \times Y | w, y, a) = 1 and \Phi (\~y, w(n), y, a(n)) converges
weakly to \Phi (\~y, w, y, a) in \BbbP (\BbbX W ) as k \rightarrow \infty for all \~y \in Y. Therefore, since the function
\~w \mapsto \rightarrow u( \~w, \~y) is nonnegative and l.s.c. for each \~y \in Y, Fatou's lemma for weakly
converging probabilities [17, Theorem 1.1] implies that for each \~y \in Y ,

(A.6)

\int 
\BbbX W

u( \~w, \~y)\Phi (d \~w| \~y, w, y, a) \leq lim inf
k\rightarrow \infty 

\int 
\BbbX W

u( \~w, \~y)\Phi (d \~w| \~y, w(nk), y, a(nk)).

For a fixed N = 1, 2, . . . , we set \varphi N
k (\~y) := min\{ 

\int 
\BbbX W

u( \~w, \~y)\Phi (d \~w| \~y, w(nk), y, a(nk)), N\} 
and \varphi N (\~y) := min\{ 

\int 
\BbbX W

u( \~w, \~y)\Phi (d \~w| \~y, w, y, a), N\} , where \~y \in Y, k = 1, 2, . . . . Note

that \varphi N (\~y) \leq lim inf k\rightarrow \infty \varphi N
k (\~y), \~y \in Y, in view of (A.6). Therefore, uniform Fatou's

lemma [20, Corollary 2.3] implies that for each N = 1, 2, . . .\int 
\BbbX Y

\varphi N (\~y)q(\BbbX W , d\~y| w, y, a) \leq lim inf
k\rightarrow \infty 

\int 
\BbbX Y

\varphi N
k (\~y)q(\BbbX W , d\~y| w(nk), y, a(nk))

\leq lim inf
k\rightarrow \infty 

\int 
\BbbX Y

\biggl[ \int 
\BbbX W

u( \~w, \~y)\Phi (d \~w| \~y, w(nk), y, a(nk))

\biggr] 
q(\BbbX W , d\~y| w(nk), y, a(nk)) \leq \lambda .

Thus, the monotone convergence theorem implies\int 
\BbbX 
u(\~x)q(d\~x| w, y, a) = lim

N\rightarrow \infty 

\int 
\BbbX Y

\varphi N (\~y)q(\BbbX W , d\~y| w, y, a) \leq \lambda .
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This is a contradiction with (A.5). Therefore, the function (w, a) \mapsto \rightarrow 
\int 
\BbbX u(\~x)q(d\~x| w, y, a)

is l.s.c. on \BbbX W \times \BbbA for each y \in \BbbX Y .
For an arbitrary fixed y \in \BbbX Y the function (w, a) \mapsto \rightarrow \eta \alpha u (w, y, a) is \BbbK -inf-compact

on \BbbX W \times \BbbA as a sum of a \BbbK -inf-compact function (w, a) \mapsto \rightarrow c(w, y, a) and a nonnegative
l.s.c. function (w, a) \mapsto \rightarrow \alpha 

\int 
\BbbX u(\~x)q(d\~x| w, y, a) on \BbbX W \times \BbbA . Moreover, Berge's theorem

for noncompact image sets [16, Theorem 1.2] implies that for each (y, a) \in \BbbX Y \times \BbbA the
function w \mapsto \rightarrow u\ast (w, y) := infa\in \BbbA \eta \alpha u (w, y; a) is l.s.c. on \BbbX W . The Borel measurability
of the function u\ast on \BbbX and the existence of a stationary policy f : \BbbX \rightarrow \BbbA such
that u\ast (x) := \eta \alpha u (x, f(x)), x \in \BbbX , follow from [13, Theorem 2.2 and Corollary 2.3(i)]
because the function (x, a) \mapsto \rightarrow \eta \alpha u (x, a) is Borel measurable on \BbbX \times \BbbA and it is inf-
compact in a on \BbbA . Property (a) for nonempty sets \{ A\ast (x)\} x\in \BbbX follows from Borel
measurability of (x, a) \mapsto \rightarrow \eta \alpha u (x, a) on \BbbX \times \BbbA and x \mapsto \rightarrow u\ast (x) on \BbbX . Property (b) for
\{ A\ast (x)\} x\in \BbbX follows from inf-compactness of a \mapsto \rightarrow \eta \alpha u (x, a) on \BbbA for each x \in \BbbX .

Proof of Theorem 5.3. According to [5, Proposition 8.2], the functions vt,\alpha (x), t =
0, 1, . . . , recursively satisfy the optimality equations with v0,\alpha (x) = 0 and vt+1,\alpha (x) =
infa\in A(x) \eta 

\alpha 
vt,\alpha (x, a) for all x \in \BbbX . So, Lemma A.2 sequentially applied to the functions

v0,\alpha (x), v1,\alpha (x), . . . implies statement (i) for them. According to [5, Proposition 9.17],
vt,\alpha (x) \uparrow v\alpha (x) as t \rightarrow +\infty for each x \in \BbbX . Therefore, v\alpha \in LW (\BbbX ). Thus, statement
(i) is proved. In addition, [5, Lemma 8.7] implies that a Markov policy defined at
the first T steps by the mappings \phi \alpha 

0 , . . . , \phi 
\alpha 
T - 1, which satisfy for all t = 1, . . . , T the

equations vt,\alpha (x) = \eta \alpha vt - 1,\alpha 
(x, \phi \alpha 

T - t(x)) for each x \in \BbbX , is optimal for the horizon T.
According to [5, Propositions 9.8 and 9.12], v\alpha satisfies the discounted cost optimality
equation v\alpha (x) = infa\in A(x) \eta 

\alpha 
v\alpha (x, a) for each x \in \BbbX ; and a stationary policy \phi \alpha is

discount-optimal if and only if v\alpha (x) = \eta \alpha v\alpha (x, \phi \alpha (x)) for each x \in \BbbX . Statements
(ii)--(v) follow from these facts and Lemma A.2.

Proof of Theorem 6.1. The equivalence of statements (a) and (b) follows directly
from Theorem 4.8 applied to \BbbS 1 := \BbbW , \BbbS 2 := \BbbY , \BbbS 3 := \BbbW \times \BbbA , and \Psi := P ( \cdot | \cdot , y, \cdot ).
According to (3.1), Theorem 4.9 applied to \BbbS 1 := \BbbW , \BbbS 2 := \BbbY , \BbbS 3 = \BbbW , \BbbS 4 := \BbbA ,
and \Xi := P ( \cdot | \cdot , y, \cdot ) implies that the stochastic kernel P ( \cdot | \cdot , y, \cdot ) on \BbbW \times \BbbY given
\BbbW \times \BbbA is semiuniform Feller if and only if the stochastic kernel R( \cdot | \cdot , y, \cdot ) on \BbbW \times \BbbY 
given \BbbP (\BbbW ) \times \BbbA is semiuniform Feller. Therefore, statement (b) holds if and only if
the stochastic kernel R( \cdot | \cdot , y, \cdot ) on \BbbW \times \BbbY given \BbbP (\BbbW )\times \BbbA is semiuniform Feller, that
is, statement (c) holds. Thus, the equivalence of statements (c)--(e) follows directly
from Theorem 4.11 applied to \BbbS 1 := \BbbW , \BbbS 2 := \BbbY , \BbbS 3 := \BbbP (\BbbW )\times \BbbA , \Psi := R( \cdot | \cdot , y, \cdot ),
\Phi := H( \cdot | \cdot , y, \cdot , \cdot ), and \phi := q( \cdot | \cdot , y, \cdot ).

Moreover, let the nonnegative function c be \BbbM \BbbK (\BbbW \times \BbbA ,\BbbY )-inf-compact, and
for each y \in \BbbY let one of the equivalent conditions (a)--(d) hold. Then, in view of
(3.3) and Theorem 6.3, \=c is nonnegative and \BbbM \BbbK (\BbbP (\BbbW ) \times \BbbA ,\BbbY )-inf-compact. Thus,
the assumptions and conclusions of Theorem 5.3 hold for the MDPCI (\BbbP (\BbbW ) \times 
\BbbY ,\BbbA , q, \=c).

Proof of Theorem 6.2. The equivalence of statements (a) and (b) follows directly
from Theorem 4.8 applied to \BbbS 1 := \BbbW , \BbbS 2 := \BbbY , \BbbS 3 := \BbbW \times \BbbY \times \BbbA , and \Psi := P.
According to (3.1), Theorem 4.9 applied to \BbbS 1 := \BbbW , \BbbS 2 := \BbbY , \BbbS 3 = \BbbW , \BbbS 4 := \BbbY \times \BbbA ,
and \Xi := P implies that the stochastic kernel P on \BbbW \times \BbbY given \BbbW \times \BbbY \times \BbbA is
semiuniform Feller if and only if the stochastic kernel R on \BbbW \times \BbbY given \BbbP (\BbbW )\times \BbbY \times \BbbA 
is semiuniform Feller. Therefore, statement (b) holds if and only if the stochastic
kernel R on \BbbW \times \BbbY given \BbbP (\BbbW )\times \BbbY \times \BbbA is semiuniform Feller, that is, statement (c)
holds. Thus, the equivalence of statements (c)--(e) follows directly from Theorem 4.11
applied to \BbbS 1 := \BbbW , \BbbS 2 := \BbbY , \BbbS 3 := \BbbP (\BbbW )\times \BbbY \times \BbbA , \Psi := R, \Phi := H, and \phi := q.
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Moreover, let the nonnegative function c be \BbbK -inf-compact, and let one of the
equivalent conditions (a)--(d) hold. Then, in view of (3.3) and [19, Theorem 3.3]
on preservation of \BbbK -inf-compactness, \=c is nonnegative and \BbbK -inf-compact. Thus,
according to Remark 5.4, the assumptions and conclusions of Theorem 5.3 hold for
the MDPCI (\BbbP (\BbbW )\times \BbbY ,\BbbA , q, \=c), and the functions vt,\alpha , t = 0, 1, . . . , and v\alpha are l.s.c.

Proof of Corollary 6.10. Let us prove that semiuniform Feller continuity of the
stochastic kernel P on \BbbW \times \BbbY given \BbbW \times \BbbA implies conditions (a) and (b). Indeed,
Definition 4.1 implies weak continuity of the stochastic kernel P1 on\BbbW given\BbbW \times \BbbA and
continuity in the total variation of the stochastic kernel Q1 on \BbbY given \BbbW \times \BbbA because
P1( \cdot | \cdot ) = P ( \cdot ,\BbbY | \cdot ) is weakly continuous and Q1( \cdot | \cdot ) = P (\BbbW , \cdot | \cdot ) is continuous in
total variation. Conversely, let us prove that conditions (a) and (b) imply semiuniform
Feller continuity of the stochastic kernel P on \BbbW \times \BbbY given \BbbW \times \BbbA . Indeed, P on \BbbW \times \BbbY 
given \BbbW \times \BbbA is WTV-continuous since

lim inf
(w\prime a\prime )\rightarrow (w,a)

inf
C\in \scrB (\BbbY )

(Q1(C| w\prime , a\prime )P1(\scrO | w\prime , a\prime ) - Q1(C| w, a)P1(\scrO | w, a))

\geq lim inf
(w\prime a\prime )\rightarrow (w,a)

(P1(\scrO | w\prime , a\prime ) - P1(\scrO | w, a)) - 

 - lim
(w\prime a\prime )\rightarrow (w,a)

sup
C\in \scrB (\BbbY )

| Q1(C| w\prime , a\prime ) - Q1(C| w, a)| = 0

for each \scrO \in \tau (\BbbW ), where a - := min\{ a, 0\} for each a \in \BbbR , the equality follows from
weak continuity of P1 on \BbbW given \BbbW \times \BbbA and continuity in the total variation of Q1 on
\BbbY given \BbbA \times \BbbW . Therefore, according to Theorem 4.6(a,b), conditions (a) and (b) from
Corollary 6.10 taken together are equivalent to semiuniform Feller continuity of the
stochastic kernel P on \BbbW \times \BbbY given \BbbW \times \BbbA . Thus, Theorem 6.1 implies all statements
of Corollary 6.10.

Proof of Corollary 6.11. For each B \in \scrB (\BbbW ) consider the family of functions

\scrG (B) :=
\Bigl\{ 
(w, a) \mapsto \rightarrow 

\int 
B

Q2(C| a,w\prime )P2(dw
\prime | w, a) : C \in \scrB (\BbbY )

\Bigr\} 
.

Let condition (a) hold. Fix an arbitrary open set \scrO \in \tau (\BbbW ). Feinberg, Kasyanov,
and Zgurovsky [21, Theorem 1], applied to the lower semiequicontinuous and uni-
formly bounded family of functions \{ (w\prime , a) \mapsto \rightarrow I\{ w\prime \in \scrO \} Q2(C| a,w\prime ) : C \in \scrB (\BbbY )\} 
and weakly continuous stochastic kernel P2(dw

\prime | w, a) on \BbbW given \BbbW \times \BbbA , implies
that the family of functions \scrG (\scrO ) is lower semiequicontinuous at all the points
(w, a) \in \BbbW \times \BbbA , that is, the stochastic kernel P on \BbbW \times \BbbY given \BbbW \times \BbbY \times \BbbA defined
in (6.4) is WTV-continuous. Therefore, Theorem 4.6(a,b) applied to the stochastic
kernel P on \BbbW \times \BbbY given \BbbW \times \BbbY \times \BbbA implies that this kernel is semiuniform Feller.
Thus, assumption (a) of Theorem 6.1 holds, and this conclusion and Theorem 6.1
imply all statements of Corollary 6.11 under condition (a).

Now let condition (b) hold. Let us prove that for each B \in \scrB (\BbbW ) the family
of functions \scrG (B) is equicontinuous at all the points (w, a) \in \BbbW \times \BbbA , which implies
condition (a) of Theorem 6.1. Indeed, for n = 1, 2, . . . ,

(A.7)
sup

C\in \scrB (\BbbY )

\bigm| \bigm| \bigm| \int 
B

Q2(C| a(n), w\prime )P2(dw
\prime | w(n), a(n)) - 

\int 
B

Q2(C| a,w\prime )P2(dw
\prime | w, a)

\bigm| \bigm| \bigm| 
\leq I

(n)
1 + I

(n)
2 ,
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where (w(n), a(n)) \rightarrow (w, a) as n \rightarrow \infty ,

I
(n)
1 := sup

C\in \scrB (\BbbY )

\bigm| \bigm| \bigm| \bigm| \int 
B

Q2(C| a(n), w\prime )P2(dw
\prime | w(n), a(n)) - 

\int 
B

Q2(C| a(n), w\prime )P2(dw
\prime | w, a)

\bigm| \bigm| \bigm| \bigm| 
I
(n)
2 := sup

C\in \scrB (\BbbY )

\int 
B

| Q2(C| a(n), w\prime ) - Q2(C| a,w\prime )| P2(dw
\prime | w, a).

Let C(n) \in \scrB (\BbbY ), n = 1, 2, . . . , be chosen to satisfy the inequality

(A.8) I
(n)
2 \leq 

\int 
B

| Q2(C
(n)| a(n), w\prime ) - Q2(C

(n)| a,w\prime )| P2(dw
\prime | w, a) + 1

n
.

Note that I
(n)
1 \rightarrow 0 as n \rightarrow \infty because the family of measurable functions \{ w\prime \mapsto \rightarrow 

Q2(C | a(n), w\prime ) : n = 1, 2, . . . and C \in \scrB (\BbbY )\} is uniformly bounded by 1, and the
stochastic kernel P2 on \BbbW given \BbbW \times \BbbA is continuous in total variation. Moreover,

the convergence I
(n)
2 \rightarrow 0 as n \rightarrow \infty follows from (A.8) and Lebesgue's dominated

convergence theorem because the family of functions \{ w\prime \mapsto \rightarrow | Q2(C
(n)| a(n), w\prime )  - 

Q2(C
(n)| a,w\prime )| : n = 1, 2, . . .\} is uniformly bounded by 1 and pointwise convergent

to 0, according to (2.1). Therefore, the family of functions \scrG (B) is equicontinuous
at all the points (w, a) \in \BbbW \times \BbbA . Thus, assumption (a) of Theorem 6.1 holds, and
this conclusion and Theorem 6.1 imply all statements of Corollary 6.11 under condi-
tion (b).
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