1

Analysis of software quality problem
Igor Bogomolov, Maryna Didkovska

Institute of Applied System Analvsis, National Technical University of Ukraine, Prospect Peremogy. 37, Kiev, 03056, UKRAINE,
E-mail: igor bogomolovi@gmail.com Site: http://mmsa.kpi.ua

This paper is focused on quditative software characteristics,
what determines software quality and methods to ensure and
improve it. In the research the problem was investigated from
two points of view: sofiware development and project
management. Concerning software development, was
Sormulated what properties have qualitative software and
compile the best practices to ensure and improve these
properties and overall sofiware quality. Concerning project
management, current theory was analysed and found another
value — development team, which significantly influences
quality. Also, dependency between team productivity and
number of team members was stated.

Key words — software quality, qualitative software, software
properties, software development methods, project management
triangle, project management dimond.

l. Introduction

The main task of the last decade of 20th century and the
beginning of the 21st century was to improve the quality
of computer services, which possibilities depend on the
software. Software was being developed for over fifty
years and during this period range of tasks that it can
solve, their level of difficulty and presentation of the
results changed dramatically.

Today software development is viewed from the
perspective of Software plus Service, which provides
assembling of software with services in a single,
personalized and accessible from anywhere tool. Still
development of qualitative software is not the norm and
there 1s no common technology through which developers
can create robust software with the relevant costs to time.
Sources of defects in modern software are extremely
diverse and it only complicates the problem. At the same
time the scale of the problem increased. If in the past the
price of error in low-quality software was limited by
single user or small group, now these boundaries
significantly expanded.

Therefore, the relevance of qualitative software
development is supported primarily by economic factors.
As you know, a lot of industry standards on commercial
software include the presence of about 6 errors per 1000
lines of code at the mean of 30 such errors. Can be said,
the level of errors in the past 20 years is practically
unchanged, despite the use of object-oriented principles,
automated debugger, better testing facilities and more
control of types in modern programming languages such
as Java, Ada and others. According to the report of the
National Institute of Standards and Technology USA the
volume of economic costs due to faulty software in the
US reaches a billion dollars a year, which is estimated
about 1% of national gross domestic product.

According to Bill Gates, the relevance of trusted
computing has the highest priority in the modern
information technologies. This trend has received a
special name - the so-called "platform for trustworthy
computing”. Therefore, the concept of reliable software
means software ability to perform tasks assigned to it
during requests for their execution. Well-known
developer of complex software systems James Fox (IBM)

even stated: "The correct software will not tolerate
failure".

According to another prominent figure in the computer
world David Patterson, who embodies the life of a
"renewed after failure computer platforms" (recovery
oriented computing), a world rush for a computer
performance has led only to human dependency on the
technologies. Computers' behavior, ranging from simple
devices to powerful routers that support the infrastructure
of Internet, is unpredictable. "Computers are ubiquitous
for today, the modern world increasingly depends on
them, but nobody has proved that they deserve such
trust." In his world-famous manifesto David Patterson
says: "It is time to elect a fundamentally different basis on
which future technologies will be built". And further:
"We must develop information technologies, on which the
world can really count, as well as it relies on other types
of technologies, fully trusting them".

As you can see problem of software quality becomes
very important. But what software is considered
qualitative? There are different definitions and in this
article it would be stated that qualitative software is
software that satisfy following properties:

- Compliance with specifications

- Fault-tolerance

- Simplicity to add/change functionality

- Consumption of minimum resources with sufficient

performance

- Security

- Usability

- Reasonable price

In this paper problem of software quality will be
analysed, and methods that can improve quality and
review current project management values that impact it
will be described.

[I.How to ensure and improve software quality”?

For these purpose developers have invented a lot of
methods. The research is focused on the following ones:

- Object-oriented programming

- Unified modeling language

- Testing

- Refactoring

- Code review

- Design patterns

- Frequent releases

Object-oriented programming (OOP) is a programming
paradigm that uses objects as data structures, consisting of
fields and methods together with their interactions, to
design computer programs. An object is a discrete bundle
of functions and procedures, often related to a particular
real-world concept. Other pieces of software can access
the object only by calling its functions and procedures
that have been allowed to be called by outsiders — object
interface. Isolating objects in this way makes software
easier to manage and keep track of OOP strongly
emphasizing discrete, reusable units of programming
logic. The paradigm focuses on data rather than

“COMPUTER SCIENCE & INFORMATION TECHNOLOGIES” (CSIT2010), 14-16 OCTOBER 2010, LVIV, UKRAINE

processes, with programs composed of self-sufficient
modules — classes, each instance of which — objects —
contains all the information needed to manipulate its own
data structure. An object-oriented program may be
viewed as a collection of interacting objects. In it each
object is capable of receiving messages, processing data,
and sending messages to other objects. OOP includes
features such as data abstraction, encapsulation,
modularity, polymorphism, and inheritance. This
paradigm allows to create a structure of program, that
makes possible to divide project scope between team
members. Thus, architect creates high-level design of a
program, different programmers in charge of different
program modules and testers are able to test modules
independently. It significantly affects quality because of
the specialization of team members. Today OOP 1s the
core consept of all software developmet processes
because it makes possible to create more qualitative
software faster then any other consept.

Unified modeling language (UML) is a standardized,
language-independent notation for the visual modeling of
real-world objects as a first step in developing an object-
oriented program. Its notation is derived from and unifies
the notations of three object-oriented design and analysis
methodologies: Grady Booch's notations, James
Rumbaugh's object-modeling techmque and Ivar
Jacobson's use case methodology. Also, it combines
techniques from data modeling, business modeling, object
modeling and component modeling. UML represents two
different views of a software model: static and dynamic.
It 15 widely used to visualy describe structure of a
program. That allows to test program on design stage,
where cost of errors correction is the lowest. It is an
elegant way to ensure program quality on the early stages
of development.

Software testing is an software investigation conducted
to provide stakeholders with information about the quality
of the product or service under test. Software testing also
provides an objective, independent view of the software
to allow the business to appreciate and understand the
risks at implementation of the software. Test techniques
include, but are not limited to, the process of executing a
program or application with the intent of finding software
bugs. Software testing, depending on the testing method
emploved, can be implemented at any time in the
development process. However, most of the test effort
occurs after the requirements have been defined and the
coding process has been completed. As such, the
methodology of the test is governed by the software
development methodology. Different software
development models will focus the test effort at different
points in the development process. Modern development
models often employ test driven development and place
an increased portion of the testing in the hands of the
developer, before it reaches a formal team of testers.
Using tests it 1s possible to get assessment of almost every
software quality aspect: from fault-tolerance to resource
consumption and security. Nowadays testing 1s the easiest
method to assess functionality (scope) and quality of a
program.

Refactoring is the process of changing the internal
structure of software to make it easier to understand and
cheaper to modify without changing its observable
behavior. The reason to refactor is to improve the design

of software, make software easier to understand, help find
bugs and help program faster. Before refactoring a solid
set of automatic unit tests is needed. The tests should
demonstrate that the behavior of the module is correct.
The process is then an iterative cycle of making a small
program transformation, testing it to ensure correctness,
and making another small transformation. If at any point a
test fails, you undo your last small change and try to
figure out what is wrong. Through many small steps the
program moves from where it was to where you want it to
be. In modern software development processes this
activity is an integral part of the software development
cycle. Like OOP defines the structure of a program and
UML describes it, refactoring makes it possible to easily
change the structure in order to suit development needs. It
1s much cheaper and faster than redesign all from the
beginning. Well refactored program is much easier to
understand, thus maintain, find bugs and add new
functionality.

Code review is a phase in the software development
process in which the authors of code and other team
members get together to review code, improving both the
overall quality of software and developers' skills. Reviews
can be done in various forms such as pair programming,
informal walkthroughs, and formal inspections. Finding
and correcting errors at this stage is relatively inexpensive
and tends to reduce the more expensive process of
handling, locating, and fixing bugs during later stages of
development. Reviewers read the code line by line to
check for flaws or potential flaws, consistency with the
overall program design and adherence to coding
standards. Code review may be especially productive for
identifying security vulnerabilities. Specialized
application programs are available that can help with this
process. Automated code reviewing facilitates systematic
testing of source code for potential trouble such as buffer
overflows, race conditions, memory leakage, size
violations, and duplicate statements. Code reviews
influence software quality in two ways. First is that
during code review less qualitative part of program is
being refactored by peers. And second — developers'
experience exchange. During code review less
experienced developers learned from more experienced
ones. However this won't immediately raise software
quality, but in long-term outlook it definitely will.

Design pattern is a general solution to a design problem
that recurs repeatedly in many projects. Software
designers adapt the pattern solution to their specific
project. Patterns use a formal approach to describing a
design problem, its proposed solution, and any other
factors that might affect the problem or the solution. A
successful pattern should have established itself as
leading to a good solution in several previous situations.
In object-oriented programming, a pattern can contain the
description of certain objects and object classes to be
used, along with their attributes and dependencies, and
the general approach to how to solve the problem. Often,
programmers can use more than one pattern to address a
specific problem. A collection of pattemns is called a
pattern framework. Patterns directly ensure software
quality through usage of well-tested solutions. However,
patterns, where they are not needed, can complicate the
design of a program and increase development time but
not wosen the quality.

“COMPUTER SCIENCE & INFORMATION TECHNOLOGIES” (CSIT’2010), 14-16 OCTOBER 2010, LVIV, UKRAINE

Frequent releases is a software development practice
that emphasizes the importance of early and frequent
releases in creating a tight feedback loop between
developers and wusers. This allows the software
development to progress faster, enables the user to help
define what the software will become, better conforms to
the users' requirements and ultimately results in higher
quality software. Frequent releases can also improve the
security of a software product, since security fixes are
quickly pushed to the end user.

[ll. How does development team impact on software
quality”?

If you look at software quality from project
management point of view and remember the project
management triangle (Fig.1), you will see that there are
three values that impact on project quality: scope, cost
and time of the project. Let us look at how does
development team related to software quality.

Scope

Quality

Cost Time
Fig.1 Project management triangle.

You can say, it is "included" in cost or time (with scope
no chance). But it is not generally true. To think so, there
must be proportional dependency between team and cost
or time. With cost it 1s more less proportional. Developer
1s paid for his experience, knowledge and skills. But
contradiction appears because it is quite hard in the
beginning to estimate how experienced and smart
developer 1s. So it is not an exception when more
experienced developer "cost” less than less experienced
one.

Time from development team dependency is much
more complicated. Let us introduce development team
productivity variable.

Productivity = Work _done* Time (1)

Productivity variable is proportional to the project time
variable, so they are interchangeable. And so time from
team dependency changes to productivity from number of
team members dependency, which is shown on Fig. 2.

Productivity

number of team members * time = const

Number of
1 N team members
Fig.2 Productivity from number of team members diagram.
On the left part of the diagram (number of team
members < N) the productivity increases. It happens
because each member has unique specialty and set of
skills in the team. And all members are collaborating and
helping each other to achieve a common goal.

On the right part of the diagram (number of team
members > N) the productivity decreases and then
stabilize. It happens because communication between
team members increases in arithmetic progression but
new members don't bring valuable and unique knowledge
anymore. And each member has to spend more time on
communication but get no valuable information instead.
Stabilization occurs when there are so much people that it
1s quicker to understand everything by yoursell. In this
case productivity of the team equals as if each member
would work independently.

N is a critical number of members when the last
member still brings enough amount of valuable and
unique knowledge to the team and communication
charges are still acceptable. It heavily depends on scope
and complexity of the project.

Based on the previous thoughts it is supposed that there
is one more value — development team, which impacts
more than others on software quality. Under development
team should be understood both number of team members
and set of their knowledge and skills. And it 1s proposed
to replace project management triangle (Fig 1) by project
management diamond (Fig.3), adding "Team" value.

Scope

Cost Time

Team
Fig.3 Project management diamond.

V. Conclusions

1. In this paper have been formulated properties of
qualitative software.

2. It has been compiled methods to ensure and improve
software quality and described their relation to
properties.

3. Tt has been analysed current values, that influence
software quality and dependencies between them
and quality.

4. It has been stated new value — development team,
that impact software quality as well. And described
time to team relation.

V.References

[1] M. V. Didkovska, Y. A. Timoshenko "Testing: Basic
defimtions, axioms and principles. Guidance. Partl"

[2] M. Fowler, K. Beck, J. Brant, W. Opdvke, D. Roberis
"Refactoring: Improving the Design of Existing
Code", Addison-Wesley Professional, 464 pages,
July 1999,

[3] K Beck M. Fowler "Planning Extreme
Programming", Addison-Wesley Professional, 160
pages, Oct. 2000,

“COMPUTER SCIENCE & INFORMATION TECHNOLOGIES” (CSIT’2010), 14-16 OCTOBER 2010, LVIV, UKRAINE

