Многокритериальное принятие решений с использованием максиминного синтеза в методе анализа иерархий

Н.И. Недашковская

Институт прикладного системного анализа Национальный технический университет Украины «КПИ»

1. Введение

Метод анализа иерархий (МАИ) многокритериальной поддержки принятия решений позволяет вычислить коэффициенты относительной важности (приоритетности) альтернатив решений на основе оценок экспертов и определить порядок ранжирования альтернатив решений [1].

В МАИ вычисление в есов альтернатив по множеству критериев осуществляется с использованием линейной свертки (в терминологии МАИ – дистрибутивный синтез), весовые коэффициенты которой – это показатели относительной важности критериев. Широкое применение этой свертки обусловлено, прежде всего, ее простотой и наглядностью. Однако, при решении многокритериальных задач применение линейной свертки допустимо при определенных ограниченных предположениях. Главным ограничивающим фактором эффективности решения является выпуклость множества векторных оценок. В частности, если множество альтернатив и множество векторных оценок конечны, то они не являются выпуклыми, п оэтому применение линейной свертки может привести к результатам, противоречащим здравому смыслу. В связи с этим, в [2] предложена модификация МАИ, в которой синтез множества весов альтернатив осуществляется по максиминной свертке, лишенной ограничения, связанного с выпуклостью множества векторных оценок.

В данной работе проведено исследование возможности появления в максиминном синтезе явления изменения порядка ранжирования альтернатив, когда к рассмотрению добавляется или удаляется альтернатива. Такое изменение порядка ранжирования получило название реверса рангов [3 – 10]. На сегодняшний день существует большое количество работ, посвященных исследованию появления реверса рангов при использовании разных линейных синтезов МАИ, таких как дистрибутивный [3 – 5] и «идеальный» [3 – 6] синтез, а также других методов многокритериального принятия решений, таких как DEAHP [7, 8], ELECTRE, TOPSIS [9], «линия» и др. [10]. Установлено, что реверс рангов может возникнуть в каждом из перечисленных методов. При этом, появление реверса в дистрибутивном и идеальном синтезе зависит как от свойств добавляемой альтернативы, например, альтернатива-копия или альтернатива, оптимальная по одному из критериев, так и от взаимосвязи между оценками альтернатив по критериям и весами критериев [5].

Цель данной работы состоит в выявлении условий появления реверса при добавлении альтернатив с разными свойствами на основании компьютерного моделирования разных видов реверса рангов в максиминном синтезе МАИ [2].

2 Максиминный синтез МАИ

Рассмотрим постановку задачи многокритериального принятия решений. Дано:

- $A = \{A_i \mid i=1,...,n\}$ множество альтернативных вариантов решений;
- $C = \{C_j \mid j = 1,...,m\}$ множество критериев;
- v_{ii} ненормированный вес альтернативы A_i относительно критерия C_{ij} ;

•
$$w_j^C$$
 - вес критерия C_j , $\sum_{j=1}^m w_j^C = 1$.

Необходимо:

- найти глобальные веса $w_i^{\text{глоб}}$ альтернатив A_i с учетом предпочтений на основе множества критериев, i=1,...,n,
- выбрать «оптимальную» альтернативу.

Оптимальной (наилучшей) является альтернатива, которая имеет максимальный глобальный вес. Альтернатива оптимальна по одному из критериев, если она имеет максимальный вес по этому критерию.

Выбор наилучшего решения $A_i^* \in A$ по максиминному синтезу осуществляется путем максимизации функции:

$$v_{i}^{2no6C} = \min_{j=1,...,m} v_{ij} w_{j}, \quad i = 1,...,n,$$

$$A_{i^{*}} : v_{i^{*}}^{2no6} = \max_{j=1,...,n} v_{i}^{2no6}.$$
(1)

Максиминная свертка (1) лишена ограничения, связанного с выпуклостью множества векторных оценок v_{ij} , которое имело место при использовании линейной свертки. В работе [2] показано, что при конечном множестве возможных решений, положительных критериях и «рациональном» поведении лица, принимающего решение, любое выбираемое решение всегда может быть получено в результате максимизации функции (1) на множестве альтернатив при определенных положительных весовых коэффициентах w_i^C .

При решении задачи распределения ресурсов веса (1) должны быть пронормированы:

$$W_i^{\text{2006}} = V_i^{\text{2006}} / \sum_{i=1}^n V_i^{\text{2006}}.$$

3 Понятие реверса рангов. Виды реверса рангов

 $Peверс\ panzoв$ — это изменение рангов альтернатив при добавлении или удалении альтернативы при условии, что не меняются множество критериев, по которым оцениваются альтернативы, веса этих критериев и оценки альтернатив относительно критериев [3 - 10].

Будем рассматривать несколько видов реверса рангов:

1 изменение оптимальной альтернативы:

$$i \neq k$$
, (2)

где i - номер оптимальной альтернативы при рассмотрении n альтернатив, $i:v_i^{\text{елоб}} = \max_{l=1,\dots,n} v_l^{\text{елоб}}, \ k$ - номер оптимальной альтернативы при рассмотрении n+1 альтернативы, $k:v_k^{\text{елоб}} = \max_{l=1,\dots,n,n+1} \widetilde{v}_l^{\text{елоб}}, \ \widetilde{v}_l^{\text{елоб}}$ - веса альтернатив при рассмотрении n+1 альтернативы.

2 изменение порядка ранжирования альтернатив

Рассмотрим пример. Предположим, что ранжирование n альтернатив имеет вид A_1 f A_2 f ... f A_k f ... f A_n . Если после добавления к рассмотрению еще одной альтернативы A_{n+1} это ранжирование изменяется и приобретает вид, например, A_1 f A_2 f ... f A_k f A_t f ... f A_n , то имеет место реверс рангов. Реверс рангов также имеет место, если веса некоторых альтернатив равны между собой до добавления альтернативы и отличаются после ее добавления (или наоборот).

В общем случае условие появления этого вида реверса рангов для пары альтернатив A_i и $A_k,\ i,k=1,...,n$ следующее:

$$(\Delta v_{ik}^{\text{eno6}} \cdot \Delta \widetilde{v}_{ik}^{\text{eno6}} < 0) \vee ((\Delta v_{ik}^{\text{eno6}} = 0) \wedge (\Delta \widetilde{v}_{ik}^{\text{eno6}} \neq 0)) \vee ((\Delta v_{ik}^{\text{eno6}} \neq 0) \wedge (\Delta \widetilde{v}_{ik}^{\text{eno6}} = 0)),$$
(3)

где $\Delta v_{ik}^{\text{2лоб}} = v_i^{\text{2лоб}} - v_k^{\text{2лоб}}$, $\Delta \widetilde{v}_{ik}^{\text{2лоб}} = \widetilde{v}_i^{\text{2лоб}} - \widetilde{v}_k^{\text{2лоб}}$, $\widetilde{v}_i^{\text{2лоб}}$ - веса альтернатив при рассмотрении n+1 альтернативы.

3 <u>изменение рангов альтернатив при их попарном рассмотрении по сравнению с рассмотрением всех альтернатив одновременно</u>

Проведем декомпозицию задачи принятия решений на подзадачи с двумя альтернативами. Если ранжирование, полученное объединением частичных решений, не совпадает с первоначальным ранжированием при одновременном рассмотрении всех альтернатив, то будем говорить, что имеет место реверс рангов.

Рассмотрим примеры указанных видов реверса рангов при использовании максиминного синтеза для решения многокритериальных задач.

4 Примеры реверсов рангов при использовании максиминного синтеза

В следующих примерах 1 и 2 иллюстрируется реверс рангов первого вида, когда к рассмотрению добавляется альтернатива, не оптимальная ни по одному из критериев (пример 1) и альтернатива-копия (пример 2). В примере 3 показан третий вид реверса.

Пример 1. Изменение оптимальной альтернативы при добавлении к рассмотрению неоптимальной альтернативы

Рассмотрим задачу, в которой необходимо выбрать одну оптимальную альтернативу из трех возможных вариантов по двум критериям C_1 и C_2 , веса которых равны 0.4 и 0.6. В соответствии с МАИ строятся матрицы парных сравнений (МПС) альтернатив:

$$M_{C_1} = \begin{pmatrix} 1 & 9 & 5 \\ 1/9 & 1 & 5/9 \\ 1/5 & 9/5 & 1 \end{pmatrix}, M_{C_2} = \begin{pmatrix} 1 & 1/8 & 1/4 \\ 8 & 1 & 2 \\ 4 & 1/2 & 1 \end{pmatrix}.$$

Следующий этап МАИ – вычисление весов альтернатив по каждому критерию методом главного собственного вектора. Для приведенных выше МПС эти веса равны (0.763; 0.085; 0.152) и (0.077; 0.615; 0.308). Применяя максиминный синтез, получим следующие глобальные веса альтернатив: (0.327; 0.240; 0.433). Исходя из этих весов, оптимальной является третья альтернатива.

Пусть к рассмотрению д обавлена еще одна альтернатива и расширенные МПС относительно тех же двух критериев равны

$$M_{C_1} = \begin{pmatrix} 1 & 9 & 5 & 2 \\ 1/9 & 1 & 5/9 & 2/9 \\ 1/5 & 9/5 & 1 & 2/5 \\ 1/2 & 9/2 & 5/2 & 1 \end{pmatrix}, M_{C_2} = \begin{pmatrix} 1 & 1/8 & 1/4 & 1/4 \\ 8 & 1 & 2 & 2 \\ 4 & 1/2 & 1 & 1 \\ 4 & 1/2 & 1 & 1 \end{pmatrix}.$$

Веса четырех альтернатив относительно каждого из критериев, вычисленные методом главного собственного вектора, равны (0.552; 0.061; 0.110; 0.276) и (0.059; 0.471; 0.235; 0.235), так что добавляемая четвертая альтернатива не оптимальна ни по одному из критериев. Максиминный синтез в результате приводит к следующим глобальным весам: (0.165; 0.114; 0.206; 0.515). Таким образом, после добавления к рассмотрению неоптимальной альтернативы оптимальная альтернатива изменилась — ею стала добавляемая альтернатива.

Пример 2. Изменение оптимальной альтернативы при добавлении к рассмотрению альтернативы - копии

Также как и в примере 1, рассматривается задача выбора альтернативы из трех возможных вариантов по двум критериям C_1 и C_2 , веса которых равны 0.25 и 0.75. Добавляется к рассмотрению альтернатива-копия, которая эквивалентна альтернативе с наименьшим весом.

МПС альтернатив по критериям, локальные и глобальные веса альтернатив до и после добавления альтернативы приведены ниже. Сравнение ранжирований до и после добавления альтернативы свидетельствует о том, что изменилась оптимальная альтернатива, ею стала a_2 .

1,000	критерий C_1 (0.25)	критерий C_2 (0.75)
МПС альтернатив		$M_{C_2} = \begin{pmatrix} 1 & 1/5 & 3/5 \\ 5 & 1 & 3 \\ 5/3 & 1/3 & 1 \end{pmatrix}$
Локальные веса альтернатив	(0.621, 0.310, 0.069)	(0.130, 0.652, 0.217)
Глобальные веса альтернатив	(0.480, 0.4	25, 0.095)
Ранжирование альтернатив	a_1 f a_2	a_2 f a_3
ПОСЛЕ ДОБАВЛЕНИЯ АЛЬТЕРНАТИВЫ		
МПС альтернатив	$M_{C_1} = \begin{pmatrix} 1 & 2 & 9 & 9 \\ 1/2 & 1 & 9/2 & 9/2 \\ 1/9 & 2/9 & 1 & 1 \\ 1/9 & 2/9 & 1 & 1 \end{pmatrix}$	$M_{C_2} = \begin{pmatrix} 1 & 1/5 & 3/5 & 1 \\ 5 & 1 & 3 & 5 \\ 5/3 & 1/3 & 1 & 5/3 \\ 1 & 1/5 & 3/5 & 1 \end{pmatrix}$
Локальные веса альтернатив Глобальные	(0.581, 0.290, 0.065, 0.065)	(0.115, 0.577, 0.192, 0.115) 0.091, 0.091)

веса альтернатив	
Ранжирование	$a_2 \succ a_1 \succ a_3 \sim a_4$
альтернатив	$\alpha_2 \wedge \alpha_1 \wedge \alpha_3 = \alpha_4$

<u>Пример 3. Изменение рангов альтернатив при их попарном рассмотрении по</u> сравнению с рассмотрением всех альтернатив одновременно

Пусть необходимо оценить четыре варианта решений по двум критериям C_1 и C_2 , и МПС вариантов равны соответственно:

$$M_{C_1} = \begin{pmatrix} 1 & 7 & 5 & 2 \\ 1/7 & 1 & 5/7 & 2/7 \\ 1/5 & 7/5 & 1 & 2/5 \\ 1/2 & 7/2 & 5/2 & 1 \end{pmatrix} \text{ if } M_{C_2} = \begin{pmatrix} 1 & 1/9 & 2/9 & 1/3 \\ 9 & 1 & 2 & 3 \\ 9/2 & 1/2 & 1 & 3/2 \\ 3 & 1/3 & 2/3 & 1 \end{pmatrix}.$$

При важностях критериев $w_1^{\rm C}=0.25$ и $w_2^{\rm C}=0.75$ максиминный синтез приводит к следующим глобальным весам вариантов решений: (0.270, 0.124, 0.173, 0.433). Поэтому ранжирование решений равно a_4 f a_1 f a_3 f a_2 .

Теперь выполним декомпозицию этой задачи на подзадачи с двумя альтернативами и найдем глобальные веса, например, для пары альтернатив \mathcal{Q}_1 и \mathcal{Q}_4 . Для этого сформируем МПС

$$M_{C_1}^{(1,4)} = \begin{pmatrix} 1 & 2 \\ 1/2 & 1 \end{pmatrix}, M_{C_2}^{(1,4)} = \begin{pmatrix} 1 & 1/3 \\ 3 & 1 \end{pmatrix},$$

и при тех же важностях критериев получим, что глобальные веса альтернатив a_1 и a_4 , вычисленные по максиминному синтезу, равны (0.667, 0.333). Таким образом, npu одновременном рассмотрении всех альтернатив имел место порядок a_4 f a_1 , а npu рассмотрении только двух альтернатив получили другое ранжирование a_1 f a_4 .

5 Моделирование реверса рангов в максиминном синтезе

Условия моделирования. Моделирование реверса рангов основано на решении случайным образом сгенерированных задач принятия решений, в которых n альтернатив оцениваются по m критериям. Для исключения влияния несогласованностей экспертных оценок на явление реверса рангов, генерировались согласованные МПС D^j , j=1,...,m: элементы одной из строк этой МПС задавались случайным образом из непрерывной шкалы [1/9, 9], а все остальные ее элементы вычислялись по правилам обратной симметричности и транзитивности [1]. Метод главного собственного вектора был использован для нахождения весов альтернатив относительно критериев. Далее осуществлялся синтез найденных весов по максиминной свертке (1) и вычислялись глобальные веса альтернатив. После этого к рассмотрению добавлялась еще одна альтернатива: случайным образом заданная неоптимальная по каждому из критериев или копия к альтернативе с наименьшим весом. Вычислялись глобальные веса n+1 альтернатив при неизменных оценках n альтернатив по всем критериям и неизменных весах самих критериев.

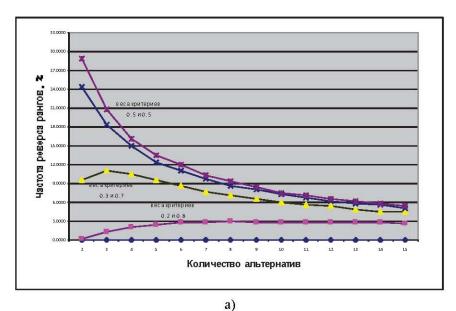
Для получения статистически значимых выводов генерировалось 10000 независимых задач принятия решений и вычислялось количество появлений первого, второго и третьего видов реверса рангов в соответствии с условиями (2) и (3) с точностью 10^{-4} . Далее частоты реверсов рангов вычислялись путем деления числа событий появления реверсов к общему числу генерируемых задач.

Моделирование было проведено для разного количества альтернатив n = 2, 3, ..., 10 и для разных наборов весов критериев.

Результаты моделирования. Установлено, что при использовании максиминного синтеза могут возникнуть все рассмотренные виды реверса рангов (рис.1 – 3). На рис.1 и 2 показаны частоты первого и второго видов реверса рангов при добавлении соответственно неоптимальной по каждому критерию альтернативы и альтернативы-копии. На рис.3 показаны частоты третьего вида реверса. Из этих рисунков видно, что частоты всех видов реверса рангов зависят от весов критериев: наибольшие частоты соответствуют з адачам принятия решений, в которых критерии имеют одинаковую или близкую важность. И чем большее отличие между весами критериев, тем меньшей является частота появления реверса.

С увеличением количества альтернатив решений частоты второго и третьего вида реверса рангов увеличиваются, а первого вида – уменьшаются. При этом, когда количество альтернатив больше трех, то частоты второго вида реверса (рис. 16, 26) не ниже чем частоты первого вида реверса (рис. 1а и 2а), соответственно, так как случаи появления реверсов рангов, представленных на рис. 1а и 2а частично включены в результаты появления реверсов, представленных на рис. 1б и 2б.

Частоты третьего вида реверса рангов возрастают с увеличением количества альтернатив (рис.3). Наиболее крутой график частот опять наблюдаются для задач принятия решений с одинаковыми важностями критериев – частота реверса равна 60% для n=3 альтернатив и достигает уже 95% для n=5 альтернатив.



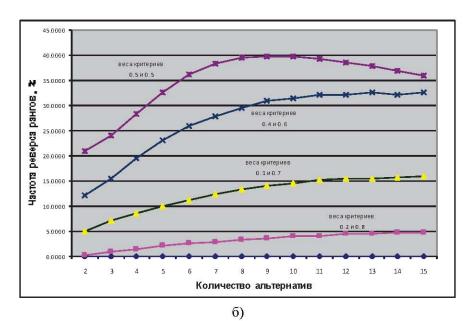
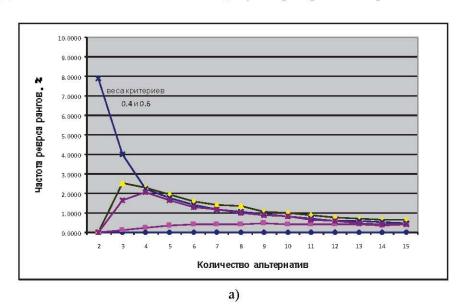


Рис.1. Частоты появления первого (a) и второго (б) видов реверса рангов при добавлении неоптимальной по каждому из критериев альтернативы



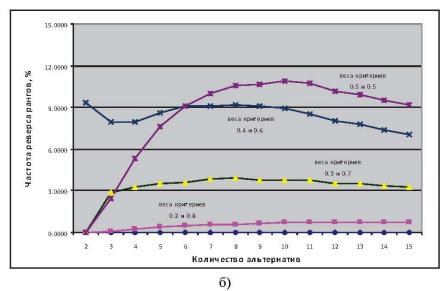


Рис.2. Частоты появления первого (a) и второго (б) видов реверса рангов при добавлении копии к альтернативе с наименьшим весом

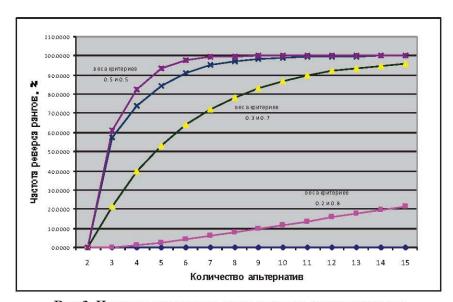


Рис.3. Частоты появления третьего вида реверса рангов

Анализ результатов моделирования позволяет сделать вывод, что явление реверса рангов возникает в задачах принятия решений с конфликтным суждениями альтернатив относительно критериев решений (см. примеры 1 и 2). Поскольку на практике при добавлении неоптимальной альтернативы к множеству альтернатив с конфликтными суждениями, оптимальное решение может измениться, то наблюдаемый в этих задачах реверс рангов отображает рациональный процесс принятия решений.

7 Заключение

В работе проведено компьютерное моделирование и установлено, что при использовании модифицированного МАИ с максиминным синтезом для решения многокритериальных задач могут иметь место разные виды реверса рангов. Частоты этого реверса зависят от весов критериев: наибольшие частоты соответствуют задачам принятия решений, в которых критерии имеют одинаковую или близкую важность. Установлено, что

реверс рангов возникает в задачах принятия решений с конфликтными оценками альтернатив по критериям решений, поэтому наблюдаемый в этих задачах реверс рангов отображает рациональный процесс принятия решений. Явление реверса рангов в МАИ с максиминным синтезом проиллюстрировано на ряде примеров.

Список литературы

- 1. Saaty Thomas L. Theory of the Analytic Hierarchy Process, Part 2.1. // Системні дослідження та інформаційні технології. 2003. №1. С.48 72.
- 2. Ногин В.Д. Упрощенный вариант метода анализа иерархий на основе нелинейной свертки критериев. http://www.apmath.spbu.ru/ru/staff/nogin/ nogin p11.pdf.
- 3. Triantaphyllou E. Two New Cases of Rank Reversals when the AHP and Some of its Additive Variants are Used that do not Occur with the Multiplicative AHP //Journal of Multi-Criteria Decision Analysis. -2001. -10, No.1. -P.11-25.
- 4. Barzilai J., Lootsma F.A., 1994. Power Relations and Group Aggregation in Multiplicative AHP and SMART. Proceedings of the 3rd International Symposium on The Analytic Hierarchy Process. Washington, DC, 157-168.
- 5. *Недашківська Н.І.* Оцінювання реверсу рангів в методі аналізу ієрархій // Системні дослідження та інформаційні технології. 2005. №4. С. 120 130.
- 6. Saaty T.L. Rank from comparisons and from ratings in the analytic hierarchy/ network processes // European Journal of Operational Research. -2006. -168, No. 2. -P.557 570.
- 7. Ramanathan R. Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process // Computers & Operations Research. 2006. 33, № 5. P.1289 1307.
- 8. Wang Y.-M., Elhag T.M.S. An approach to avoid rank reversal in the AHP// Decision Support Systems. -2005. -42, No.23. -P.1474 1480.
- 9. Wang X., Triantaphyllou E. Ranking irregularities when evaluating alternatives by using some ELECTRE methods // Omega. -2008. -36, No 1. -P. 45 -63.
- 10. Тоценко В.Г. О проблеме реверса рангов альтернатив при мультикритериальном оценивании // Проблемы управления и информатики. 2006. №3. С. 65 74.