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to the player who chose the unsensible strategy. The lop-
sided minimax equality in Feinberg et al. (2022, Theorem 18)
(see Theorem2.7(a) below) is used in Feinberg et al. (2022,
Theorem 20) to prove the existence of a solution if payoffs are
bounded from below.

Section2 of this article provides main definitions and pre-
liminary results, some of which are taken from our previous
paper Feinberg et al. (2022). Section3 provides main results.
In addition to Assumptions2.8 and 3.5 mentioned above,
the existence of a solution is established in Theorem3.9
under the conditions that the payoff function is lower/upper
semi-continuous in the corresponding variables, and the pay-
off function is inf/sup-compact in the decision variable cor-
responding to decisions of the player for at least one deci-
sion chosen by another player. The same conditions are
assumed for the payoff function in Aubin and Ekeland (1984,
Theorem 6.2.8) stating the existence of solutions within the
class of pure strategies for convex/concave payoff functions.
The results are illustrated in Section4 in which the fol-
lowing game is considered. Two players choose nonnegative
numbers, and the payoff is a polynomial function of the
difference between these numbers. We completely classify
this game: in some cases there are no solutions, in some
cases solutions exist, an in some cases solutions exist, but
pure solutions do not exist. Some of the proofs are provided
in Section5.

Our initial motivation for studying games with unbounded
payoffs in Feinberg et al. (2022) and in this article was
originated by the progress in the theory of Markov deci-
sion processes with possibly noncompact decision sets and
unbounded costs that led to the extension of Berge•s maxi-
mum theorem, see Berge (1963, p. 116), to possibly noncom-
pact decision sets; see Feinberg and Kasyanov (2015), Fein-
berg, Kasyanov, and Voorneveld (2014), Feinberg, Kasyanov,
and Zgurovsky (2014), and Feinberg et al. (2013, 2021).
These results were applied in Feinberg et al. (2022) to games
with perfect information and, as described above, some results
for games with simultaneous moves are also obtained in Fein-
berg et al. (2022). In particular, the existence of solutions is
established in Feinberg et al. (2022, Theorem 20) for payoffs
bounded below, and this and other assumptions imply com-
pactness of one of the decision sets. This article studies more
general models, when both decision sets may be noncompact.
These models have potential applications to stochastic games;
see Jáskiewicz and Nowak (2011, 2018), Mertens et al. (2015,
Chapter VII), and references therein for the literature on
stochastic games.

2 DEFINITIONS AND PRELIMINARY
RESULTS

Let S be a metric space, and(S) be the Borel𝜎-field on S,

that is, the𝜎-field is generated by all open sets of the metric
spaceS. For a nonempty Borel subsetS⊂ S, let(S) denote

the 𝜎-field whose elements are intersections ofS with ele-
ments of(S). Observe thatSis a metric space with the same
metric as onS. Therefore,(S) is its Borel𝜎-field. Let P(S)
be the set of probability measures on(S,(S)). We denote by
Pfs(S) the set of all probability measures whose supports are
finite subsets of the setS. A sequence of probability measures
{𝜇(n)}n=1,2,… from P(S) converges weaklyto 𝜇 ∈ P(S) if for
each bounded continuous functionf onS

∫
S

f (s)𝜇(n)(ds)→
∫

S

f (s)𝜇(ds) as n→ ∞.

We endowP(S) with the topology of the weak convergence
of probability measures onS. If S is a separable metric space,
thenP(S) is separable metric space too and the setPfs(S) is
dense inP(S); Parthasarathy (1967, Chapter II, Theorems 6.2
and 6.3). LetR ∶= R ∪ {±∞}, whereR is the set of real
numbers.

An integral ∫
S

f (s)𝜇(ds) of a measurableR-valued func-
tion f on S over the measure𝜇 ∈ P(S) is well-defined if
either−∞ < ∫

S
f −(s)𝜇(ds) or ∫

S
f +(s)𝜇(ds) < +∞, where

f −(s) = min{f (s),0}, f +(s) = max{f (s),0}, s ∈ S. If the
integral is well-defined, then∫

S
f (s)𝜇(ds) ∶= ∫

S
f +(s)𝜇(ds) +

∫
S

f −(s)𝜇(ds).

Definition 2.1. A two-person zero-sum gameis
a triplet{A,B, c}, where

(i) A is the space of decisions for Player I,
which is a nonempty Borel subset of a
Polish space;

(ii) B is thespace of decisions for Player II,
which is a nonempty Borel subset of a
Polish space;

(iii) the payoff from Player I to Player II,−∞ <

c(a,b) < +∞, for choosing decisionsa ∈
A andb ∈ B, is ameasurablefunction on
A × B;

(iv) for eachb ∈ B the functiona → c(a,b) is
bounded from below onA;

(v) for eacha ∈ A the functionb → c(a,b) is
bounded from above onB.

The game is played as follows:

€ a decision-makers (Players I and II) choose
simultaneously respective decisionsa ∈ A

andb ∈ B;
€ the result(a,b) is announced to both of them;
€ Player I pays Player II the amountc(a,b).

Everywhere in this article, except in some pathological situ-
ations described in Section4, we assume that a game{A,B, c}
satisfies conditions (i…v) from Definition2.1 and consider
only such games.

Strategies(sometimes called •mixed strategiesŽ) for Play-
ers I and II are probability measures𝜋A ∈ P(A) and𝜋B ∈
P(B) respectively. Moreover,𝜋A (𝜋B) is calledpure if the
probability measure𝜋A( ⋅ ) (𝜋B( ⋅ )) is concentrated at one
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point. Note thatP(A) is theset of strategiesfor Player I, and
P(B) is theset of strategiesfor Player II.

With a slight abuse of notation, we identify a pure strategy
with the decision it chooses. In particular,A andB are the
sets of pure strategies for Players I and II respectively. We
usually writea instead of𝛿{a} andb instead of𝛿{b},where𝛿{a}
and𝛿{b} are probability measures on(A,(A)) and(B,(B))
concentrated at the pointsa ∈ A andb ∈ B respectively.

Let

ĉ⊞(𝜋A
, 𝜋

B) ∶=
∫

A
∫

B

c+(a,b)𝜋B(db)𝜋A(da), ĉ⊟(𝜋A
, 𝜋

B)

∶=
∫

A
∫

B

c−(a,b)𝜋B(db)𝜋A(da),

for each(𝜋A
, 𝜋

B) ∈ P(A) × P(B). Then theexpected payoff
from Player I to Player II is

ĉ(𝜋A
, 𝜋

B) ∶= ĉ⊞(𝜋A
, 𝜋

B) + ĉ⊟(𝜋A
, 𝜋

B), (2.1)

and it is well-defined, if either̂c⊞(𝜋A
, 𝜋

B) < +∞ or −∞ <

ĉ⊟(𝜋A
, 𝜋

B), where(𝜋A
, 𝜋

B) ∈ P(A) × P(B). We notice that
it is possible that̂c⊞ ≠ ĉ+ andĉ⊟ ≠ ĉ−. Of course, when
the functionc is unbounded from below and from above, the
quantityĉ(𝜋A

, 𝜋
B) is undefinedfor some(𝜋A

, 𝜋
B) ∈ P(A) ×

P(B). Assumptions (iv) and (v) for the game{A,B, c} imply
that−∞ < ĉ⊟(𝜋A

,b) for each𝜋A ∈ P(A) andb ∈ B, and
ĉ⊞(a, 𝜋B) < +∞ for eacha ∈ A and𝜋B ∈ P(B) respectively.

The set of strategies for each player is partitioned into the
sets ofsensible strategiesPS(A) and PS(B) (strategies, for
which the expected payoff is well-defined for all strategies
played by another player) andunsensible strategiesPU(A) and
PU(B):

P
S(A) ∶= {𝜋A ∈ P(A) ∶ ĉ(𝜋A

, 𝜋
B
∗ ) is well-defined for each𝜋B

∗ ∈ P(B)},
P

U(A) ∶= {𝜋A ∈ P(A) ∶ ĉ(𝜋A
, 𝜋

B
∗ ) is undefined for some𝜋B

∗ ∈ P(B)},
P

S(B) ∶= {𝜋B ∈ P(B) ∶ ĉ(𝜋A
∗ , 𝜋

B) is well-defined for each𝜋A
∗ ∈ P(A)},

P
U(B) ∶= {𝜋B ∈ P(B) ∶ ĉ(𝜋A

∗ , 𝜋
B) is undefined for some𝜋A

∗ ∈ P(A)}.

Assumptions (iv) and (v) from Definition2.1 imply that
Pfs(A) ⊂ PS(A) and Pfs(B) ⊂ PS(B). Therefore,PS(A) is
dense inP(A) andPS(B) is dense inP(B).

Let us introduce theworst gainof Player II for choosing a
strategy𝜋B ∈ P(B) andworst lossof Player I for choosing a
strategy𝜋A ∈ P(A) respectively:

ĉ♭(𝜋B) ∶= inf
a∈A

ĉ(a, 𝜋B) and ĉ♯(𝜋A) ∶= sup
b∈B

ĉ(𝜋A
,b).

(2.2)
These definitions and assumptions (iv,v) from Definition2.1
of the game{A,B, c} imply

−∞ < ĉ♭(b) ≤ c(a,b) ≤ ĉ♯(a) < +∞, a ∈ A, b ∈ B,

(2.3)

According to Feinberg et al. (2022, Theorem 17 and
Lemma 6),

ĉ♭(𝜋B) = inf
𝜋

A
∗ ∈PS(A)

ĉ(𝜋A
∗ , 𝜋

B) and ĉ♯(𝜋A)

= sup
𝜋

B
∗ ∈PS(B)

ĉ(𝜋A
, 𝜋

B
∗ ), (2.4)

the inequality

ĉ♭(𝜋B) ≤ ĉ♯(𝜋A), (2.5)

holds for each𝜋A ∈ P(A) and𝜋B ∈ P(B) such that̂c(𝜋A
, 𝜋

B)
is well-defined, the functionŝc♯ andĉ♭ are convex onP(A)
and concave onP(B) respectively, and the following level sets

P
♯

𝛼
(A) ∶= {𝜋A

∗ ∈ P(A) ∶ ĉ♯(𝜋A
∗ ) ≤ 𝛼},

P
♭

𝛼
(B) ∶= {𝜋B

∗ ∈ P(B) ∶ ĉ♭(𝜋B
∗ ) ≥ 𝛼},

are convex for all𝛼 ∈ R.

In particular,ĉ(𝜋A
, 𝜋

B) is well-defined for𝜋A ∈ PS(A) and
𝜋

B ∈ PS(B).Therefore, inequality (2.5) holds for𝜋A ∈ PS(A)
and𝜋B ∈ PS(B). It is not clear whether inequality (2.5) holds
for 𝜋A ∈ P(A) and𝜋B ∈ P(B) whenĉ(𝜋A

, 𝜋
B) is undefined.

The following definition introduces the lower and upper
values in a slightly more delicate way than it is usually done
whenĉ(𝜋A

, 𝜋
B) are always defined.

Definition 2.2 (Lower and upper values of the
game). The quantities

v♭ ∶= sup
𝜋

B∈PS(B)
ĉ♭(𝜋B) and v♯ ∶= inf

𝜋
A∈PS(A)

ĉ♯(𝜋A), (2.6)

are the lower and upper values of the game
{A,B, c} respectively.

Since inequality (2.5) is valid for every pair of strategies
𝜋

A ∈ PS(A) and𝜋B ∈ PS(B), the inequalityv♭ ≤ v♯ holds.

In addition,−∞ < supb∈B
ĉ♭(b) ≤ sup

𝜋
B∈PS(B) ĉ

♭(𝜋B) = v♭,
where the second inequality holds because every pure strat-
egy is sensible in view of assumptions (iv) and (v) from
Definition 2.1, and the first inequality follows from (2.3).
Similarly, v♯ < +∞. Therefore,

−∞ < v♭ ≤ v♯ < +∞. (2.7)

Equalities (2.4) and (2.6) imply

v♭ = sup
𝜋

B∈PS(B)
inf

𝜋
A∈PS(A)

ĉ(𝜋A
, 𝜋

B) and

v♯ = inf
𝜋

A∈PS(A)
sup

𝜋
B∈PS(B)

ĉ(𝜋A
, 𝜋

B). (2.8)

If ĉ(𝜋A
, 𝜋

B) is well-defined for each(𝜋A
, 𝜋

B) ∈ P(A) ×P(B),
as this takes place whenc is bounded from below or above on
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496 FEINBERG ET AL .

A × B, then the upper and lower values of the game defined
in (2.6) coincide with their classic definition, that is,

v♭ = sup
𝜋

B∈P(B)
inf

𝜋
A∈P(A)

ĉ(𝜋A
, 𝜋

B) and

v♯ = inf
𝜋

A∈P(A)
sup

𝜋
B∈P(B)

ĉ(𝜋A
, 𝜋

B). (2.9)

Definition 2.3 (Solution for a player). A strat-
egy 𝜋

A ∈ PS(A) (𝜋B ∈ PS(B)) is called a
solution for Player I (II)if

ĉ♯(𝜋A) = v♯ (ĉ♭(𝜋B) = v♭). (2.10)

A solution𝜋A (𝜋B) for Player I (II) is calledpure
if the respective strategy𝜋A (𝜋B) is pure.

Definition 2.4 (Value of a game). If the
equality

v♭ = v♯, (2.11)

holds, then we say that this common quantity is
the value of the game{A,B, c}. We denote the
value byv.

In view of this definition, if the valuev exists, then it is
unique and, in view of (2.7), v is a real number. If̂c(𝜋A

, 𝜋
B)

is well-defined for each(𝜋A
, 𝜋

B) ∈ P(A)×P(B), as this takes
place if and only ifc is bounded from below or above onA ×
B, then the value defined in (2.11) coincides with its classic
definition, that is,

v = v♭ = sup
𝜋

B∈P(B)
ĉ♭(𝜋B) = sup

𝜋
B∈P(B)

inf
𝜋

A∈P(A)
ĉ(𝜋A

, 𝜋
B) = v♯

= inf
𝜋

A∈P(A)
ĉ♯(𝜋A) = inf

𝜋
A∈P(A)

sup
𝜋

B∈P(B)
ĉ(𝜋A

, 𝜋
B).

Lemma 2.5. If the value v of a game{A,B, c}
exists, then

v = sup
𝜋

B∈P(B)
ĉ♭(𝜋B) = inf

𝜋
A∈P(A)

ĉ♯(𝜋A). (2.12)

Proof. Note that

v♭ = sup
𝜋

B∈PS(B)
ĉ♭(𝜋B) ≤ sup

𝜋
B∈P(B)

ĉ♭(𝜋B) ≤ inf
𝜋

A∈PS(A)
ĉ♯(𝜋A) = v♯,

(2.13)
where the equalities follow from the definitions
of lower and upper values (2.6), the first inequal-
ity follows from PS(B) ⊂ P(B), and the second
inequality follows from inequality (2.5) because
ĉ(𝜋A

, 𝜋
B) is well-defined for each pair(𝜋A

, 𝜋
B) ∈

PS(A) × P(B). Similarly,

v♭ = sup
𝜋

B∈PS(B)
ĉ♭(𝜋B) ≤ inf

𝜋
A∈P(A)

ĉ♯(𝜋A) ≤ inf
𝜋

A∈PS(A)
ĉ♯(𝜋A) = v♯.

(2.14)
Therefore, (2.12) follows from (2.13) and (2.14)
becausev♭ = v♯ = v. ▪

We recall that for a metric spaceS a functionf ∶ S →
R is called lower semi-continuous at s∈ S, if for each
sequence{s(n)}n=1,2,… , that converges tos in S, the inequal-
ity lim infn→∞f (s(n)) ≥ f (s) holds. A functionf ∶ S → R

is calledupper semi-continuous at s∈ S, if −f is lower
semi-continuous ats ∈ S. A function f ∶ S → R

is called lower/upper semi-continuous, if f is lower/upper
semi-continuous at eachs ∈ S. A function f ∶ S → R is
calledinf-compact onS, if all the level sets{{s∈ S ∶ f (s) ≤
𝜆}}𝜆∈R are compact inS. A function f ∶ S → R is called
sup-compact onS if −f is inf-compact onS.

The following assumptions contains all the semi-continuity
assumptions on the payoff functionc used in this article.

Assumption 2.6. The payoff functionc ∶ A ×
B → R satisfies the following conditions:

(a1) for eachb ∈ B the functiona → c(a,b) is
lower semi-continuous;

(a2) there existsb0 ∈ B such that the function
a → c(a,b0) is inf-compact onA;

(b1) for eacha ∈ A the functionb → c(a,b)
is upper semi-continuous;

(b2) there existsa0 ∈ A such that the function
b → c(a0,b) is sup-compact onB.

The following theorem, whose part (a) is taken from Fein-
berg et al. (2022, Subsection 5.4), provides sufficient condi-
tions for the existence of a value of the game{A,B, c} in the
sense of Definition2.4.

Theorem 2.7.

(a) (Existence of a lopsided value; Feinberg
et al. (2022, Theorem 18 and Corollary 4)).
If a two-person zero-sum game{A,B, c}
satisfies Assumption2.6(a1,a2), then

min
𝜋

A∈P(A)
ĉ♯(𝜋A) = sup

𝜋
B∈Pfs(B)

ĉ♭(𝜋B) = v♭,

(2.15)
and the setP♯

v♭
(A) is a nonempty convex

compact subset ofP(A).
(b) (Existence of the value). Under the

assumptions of statement (a), the value
v = v♭ = v♯ of the game exists if and only if

v♯ = inf
𝜋

A∈P(A)
ĉ♯(𝜋A). (2.16)

Proof of Theorem2.7(b). Let the assumptions
of Theorem2.7 (a) hold. In view of (2.15), the
infimum in (2.16) can be replaced with the min-
imum. If v♭ = v♯, then (2.15) implies (2.16). If
(2.16) holds, then (2.15) impliesv♭ = v♯. ▪

Theorem2.7 (b) is useful for proving the existence of
the value. Observe that (2.16) holds under the following
condition:

Assumption 2.8. ĉ♯(𝜋A) > v♯ for all 𝜋
A ∈

PU(A).

This is true becauseP(A) = PS(A) ∪ PU(A), and,
if Assumption 2.8 is correct, then (2.16) becomes the
definition ofv♯ given in (2.6). Therefore, Assumption2.8and
Assumption2.6 (a1,a2) imply the existence of the value of
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FEINBERG ET AL . 497

the game. Moreover, if the valuev exists and Assumption2.8
holds, then

P
♯

v(A) ⊂ P
S(A). (2.17)

The similar observations are applicable to the lower value
v♭, when condition (2.18) is replaced symmetrically with
condition (3.9) for Player II presented below.

Note that Assumption2.8holds if

ĉ♯(𝜋A) = +∞ for all 𝜋
A ∈ P

U(A). (2.18)

However, as Example 3 in Feinberg et al. (2022) demon-
strates, it is possible thatĉ♯(𝜋A) < +∞ for some𝜋A ∈ PU(A)
even under stronger conditions than Assumption2.6 (a1,a2).
We also note that statement (2.18) holds if and only ifP♯

𝛼
(A) ⊂

PS(A) for each𝛼 ∈ R.

Remark2.9. Assumption2.6 (a1,a2) are natu-
ral for the existence of a solution for Player I.
For example, they are assumed in Aubin and
Ekeland (1984, Theorem 6.2.7), where the exis-
tence of a solution for Player I is stated for
payoff functionsc(a,b) being convex ina and
concave inb. In particular, if the decision set
of Player II is a singleton, that is,B = {b0},
then the game becomes an optimization problem.
For this optimization problem, inf-compactness
Assumption2.6 (a2) is a natural sufficient con-
dition for the existence of a minimum, and this
minimum corresponds to the solution for Player I
and for the game. If the functionc is bounded
above, then Assumption2.6(a2) implies that the
set A is compact becauseA = {a ∈ A ∶
c(a,b0) ≤ 𝜆} for some𝜆 ∈ R. If the setA
is compact, then Assumption2.6 (a1) implies
Assumption2.6(a2).

Let us consider some corollaries from Theorem2.7. We
recall that, as discussed in Section2, the action setsA andB

can be identified with the sets of pure strategies.

Corollary 2.10. (a) For is a two-person game
{A,B, c},

ĉ♯(𝜋A) = sup
𝜋

B∈Δ′(B)
ĉ(𝜋A

, 𝜋
B), 𝜋

A ∈ P(A), (2.19)

for all Δ′(B) ⊂ P(B) such thatB ⊂ Δ′(B) ⊂

PS(B).
(b) (Feinberg et al.,2022, Corollary 3). If

Assumption2.6(a1,a2) hold, then

sup
𝜋

B∈Δ(B)
ĉ♭(𝜋B) = min

𝜋
A∈P(A)

ĉ♯(𝜋A),

for all Δ(B) ⊂ P(B) such thatPfs(B) ⊂ Δ(B) ⊂
PS(B).

Proof. Statement (a) follows from (2.2) and
(2.4). ▪

The following corollary states the classic minimax equal-
ity, which is well-known for a compact setA; see Mertens
et al. (2015, Proposition I.1.9).

Corollary 2.11 (Feinberg et al. (2022,
Corollary 5)). If for each b ∈ B the function
a → c(a,b) is inf-compact, then

min
𝜋

A∈P(A)
sup

𝜋
B∈Pfs(B)

ĉ(𝜋A
, 𝜋

B) = sup
𝜋

B∈Pfs(B)
min

𝜋
A∈P(A)

ĉ(𝜋A
, 𝜋

B).

(2.20)
Corollary 2.10 implies additional versions of equality

(2.20) with the setPfs(B) in the left and right hand sides of
(2.20) replaced with arbitrary setsΔ′(B) andΔ(B) specified
in statements (a) and (b) of Corollary2.10 respectively. In
addition, according to Feinberg et al. (2022, Theorem 17),
equality (2.19) holds whenB ⊂ Δ′(B) ⊂ P

S
𝜋

A
(B), where

P
S
𝜋

A
(B) = {𝜋B

∗ ∈ P(B) ∶ ĉ(𝜋A
, 𝜋

B
∗ ) is well-defined}, 𝜋A ∈

P(A). Therefore, in the left hand side of (2.20) the setPfs(B)
can be replaced with a setΔ′ such thatB ⊂ Δ′(B) ⊂ P

S
𝜋

A
(B).

Next we define solutions for a game with a payoff function
unbounded from above and from below.

Definition 2.12 (Solution for a game). A pair
of strategies(𝜋A

, 𝜋
B) ∈ PS(A) × PS(B) for Play-

ers I and II is called asolution (saddle point,
equilibrium) of the game{A,B, c} if

ĉ(𝜋A
, 𝜋

B
∗ ) ≤ ĉ(𝜋A

, 𝜋
B) ≤ ĉ(𝜋A

∗ , 𝜋
B), (2.21)

for all 𝜋A
∗ ∈ P(A) and𝜋B

∗ ∈ P(B). A solution
(𝜋A

, 𝜋
B) for the game{A,B, c} is calledpure if

the strategies𝜋A and𝜋B are pure.

If a solution (𝜋A
, 𝜋

B) ∈ PS(A) × PS(B) for the game
{A,B, c} exists, the real numberv = ĉ♭(𝜋B) = v♭ = v♯ =
ĉ♯(𝜋A) = ĉ(𝜋A

, 𝜋
B) is the value of this game. Indeed, since

(𝜋A
, 𝜋

B) ∈ PS(A) × PS(B), inequalities (2.21) imply that
ĉ♭(𝜋B) = ĉ(𝜋A

, 𝜋
B) = ĉ♯(𝜋A). Therefore,

v♭ = ĉ♭(𝜋B) = ĉ(𝜋A
, 𝜋

B) = ĉ♯(𝜋A) = v♯, (2.22)

where the first and the last equalities hold sinceĉ♭(𝜋B
∗ ) ≤

ĉ♯(𝜋A) andĉ♭(𝜋B) ≤ ĉ♯(𝜋A
∗ ) for all (𝜋A

∗ , 𝜋
B
∗ ) ∈ PS(A)×PS(B).

Moreover,(𝜋A
, 𝜋

B) ∈ PS(A) × PS(B) is the solution for
the game{A,B, c} if and only if there exists the valuev, the
strategy𝜋A is a solution for Player I, and the strategy𝜋B is
a solution for Player II. Indeed, the necessary condition is
proved in the previous paragraph, and the sufficient condition
follows from ĉ(𝜋A

, 𝜋
B) ≤ ĉ♯(𝜋A) = v = ĉ♭(𝜋B) ≤ ĉ(𝜋A

, 𝜋
B),

where the equality in the middle hold because𝜋
A and𝜋B are

solutions for Players I and II respectively, andv is the value.
If a pure solution(a,b) ∈ A × B for the game{A,B, c}

exists, then the number

v = ĉ♭(b) = v♭ = v♯ = ĉ♯(a) = c(a,b), (2.23)

is the value of this game. Moreover,

v = sup
b∗∈B

inf
a∗∈A

c(a∗,b∗) = inf
a∗∈A

sup
b∗∈B

c(a∗,b∗),

because, by the definitions ofĉ♭ andĉ♯,

sup
b∗∈B

inf
a∗∈A

c(a∗,b∗) = sup
b∗∈B

ĉ♭(b∗),

inf
a∗∈A

sup
b∗∈B

c(a∗,b∗) = inf
a∗∈A

ĉ♯(a∗),
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498 FEINBERG ET AL .

and, in view of (2.23),

inf
a∗∈A

ĉ♯(a∗) ≤ ĉ♯(a) = v = ĉ♭(b) ≤ sup
b∗∈B

ĉ♭(b∗) ≤ inf
a∗∈A

ĉ♯(a∗),

where the last inequality follows from (2.5) with 𝜋
A = 𝛿{a}

and𝜋B = 𝛿{b}. Therefore, the game{A,B, c} has a solution in
pure strategies (that is, the players can play only pure strate-
gies, and this game has a solution) if and only if there is a pure
solution for the game{A,B, c}.

Remark2.13. Let {A,B, c} be a two-person
zero-sum game introduced in Definition2.1.
Then the triplet {B,A,−cA↔B}, where
cA↔B(b,a) ∶= c(a,b) for eacha ∈ A andb ∈ B,

is also a game satisfying conditions (i…v) from
Definition 2.1. If this construction is repeated, it
leads to the original game. The game{A,B, c}
has a value (solution for Player I, Player II, solu-
tion) if and only if the game{B,A,−cA↔B} has
a value (solution for Player II, Player I, solution).

3 MAIN RESULTS AND DISCUSSION

Since this article deals with symmetrically defined games,
each assumption or statement for Player I can be reformulated
as the corresponding assumption or statement for Player II.
In this article, we provide assumptions and statements that
involve both Players or only Player I. Symmetric assumptions
and statements for Player II are provided only if they are used
in explanations or in other statements.

To provide sufficient conditions for the validity of
Assumption2.8, let us define

ĉ⊞,♯(𝜋A) ∶= (ĉ⊞)♯(𝜋A) = sup
b∈B

ĉ⊞(𝜋A
,b), 𝜋

A ∈ P(A).

(3.1)
We also define the symmetric function for Player II,

ĉ⊟,♭(𝜋B) ∶= (ĉ⊟)♭(𝜋B) = inf
a∈A

ĉ⊟(a, 𝜋B), 𝜋
B ∈ P(B).

(3.2)
The following theorem describes the sufficient conditions for
Assumption2.8.

Theorem 3.1 (Sufficient conditions for
Assumption2.8). Assumption2.8holds if at least
one of the following assumptions is satisfied:

(L) the function c is bounded below onA×B;
(U) the function c is bounded above onA×B;

(A1) there exist𝛾A ∈ (0,1), LA > 0, and b0 ∈
B such that for each a∈ A

−LA + 𝛾Aĉ♯(a) ≤ c+(a,b0); (3.3)

(A2) there exist𝛾A ∈ (0,1), LA > 0, and𝜋B

0 ∈
PS(B) such that

−∞ <

∫
B

min{0, ĉ♭(b)}𝜋B

0 (db), and

− LA + 𝛾Aĉ♯(a) ≤ ĉ⊞(a, 𝜋B

0 ), (3.4)

for each a∈ A;

(A3) there exist𝛾A ∈ (0,1) and MA > 0 such
that for each𝜋A ∈ P(A) and𝜋B ∈ P(B)

𝛾Aĉ⊞(𝜋A
, 𝜋

B) ≤ ĉ♯(𝜋A) +MA; (3.5)

(A4) there exists a functionΨA ∶ R → R such
that ΨA(s) < +∞, if s < +∞, and for
each𝜋A ∈ P(A) and𝜋B ∈ P(B)

ĉ⊞(𝜋A
, 𝜋

B) ≤ ΨA(ĉ♯(𝜋A)); (3.6)

(A5) if ĉ♯(𝜋A) < +∞ for 𝜋
A ∈ P(A), then

ĉ⊞,♯(𝜋A) < +∞.

Moreover, Assumption (A5) is equivalent to
statement (2.18).

The proof of Theorem3.1 is provided in Section5.
The relations between assumptions (U), (A1)…(A5)

are described below in implications (5.2). Accord-
ing to Theorem3.1, each of these assumption implies
Assumption2.8. However, assumptions (U), (L), (A1)…(A5)
are simpler than Assumption2.8and useful for applications.

Assumptions (L), (U), (A1)…(A5) are formulated in terms
of the primitives of the model. For example, Assumption (A5)
means that for every probability𝜋A on the metric spaceA,

the inequality

sup
b∈B

{
∫

A

c+(a,b)𝜋A(da) +
∫

A

c−(a,b)𝜋A(da)
}

< +∞,

implies

sup
b∈B ∫A

c+(a,b)𝜋A(da) < +∞.

Simple Example3.2, which we provide for illustrative pur-
poses, describes a two-person zero-sum game{A,B, c} with
noncompact decision sets and payoff functionc unbounded
from above and below. In this example, expected payoffs are
not defined for some pairs of strategies for Players I and II.
Currently available literature does not have results on the
existence of a value and a solution for such games. How-
ever, for this example it is intuitively clear that the value
is 0, and pure strategiesa = 0 and b = 0 for Players
I and II respectively form a solution. This game satisfies
assumption (A1) and, therefore, it satisfies Assumption2.8.
It also satisfies Assumption2.6(a1,a2,b1,b2) and, as follows
from Theorem3.7(B1), it satisfies Assumption3.5, which is
symmetric to Assumption2.8. In view of Theorems2.7 (ii)
and3.9, this game has a value and a solution. In addition, the
value is 0, and pure strategiesa = 0 andb = 0 are the unique
solutions for Player I and II respectively.

Example 3.2. Let A = B = R, c(a,b) = a2 −
b2
, (a,b) ∈ R2

. Then the game{A,B, c} satis-
fies assumption (A1) and, therefore, it satisfies
Assumption2.8. Indeed, if we consider arbitrary
b0 ∈ R, 𝛾A ∈ (0,1) and setLA ∶= b2

0, then

−LA + 𝛾Aĉ♯(a) = 𝛾Aa2 − b2
0 ≤ a2 − b2

0 = c(a, b0) ≤ c+(a,b0),

for eacha ∈ R becausêc♯(a) = a2 for each
a ∈ R.
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FEINBERG ET AL . 499

The following Theorem3.3 provides sufficient conditions
for the existence of a value and a solution for a one of the
Players for a two-person zero-sum game with possibly non-
compact decision sets and unbounded payoffs. This theorem
and Corollary3.4 also describe the properties of the solu-
tion sets under these conditions. In general, an infinite game
may not have a value; see Yanovskaya (1974, p. 527) and
the references to counterexamples by Ville, by Wald, and by
Sion and Wolfe cited there. Therefore, some additional con-
ditions for the existence of a value and solutions are needed.
The results available in the literature require among other
assumptions that either at least one of the decision sets is
compact (Alpern and Gal,1988; Mertens et al.,2015, Propo-
sitions I.1.9 and I.2.2; Prokopovych and Yannelis,2014;
Tian, 1992) or the payoff function is convex/concave-like
(Ansari et al.,2000; Aubin and Ekeland,1984, Theorem
6.2.7; Nessah and Tian,2016; Perchet and Vigeral,2015;
Zeng et al.,2006). Theorems3.3 and 3.9 of this article
require neither compactness of one of the decision sets nor
convexity/concavity-like properties of the payoff function.
Baye et al. (1993), Nessah and Tian (2013), and Tian (2015)
provide sufficient conditions for the existence of pure solu-
tions for games with possibly noncompact decision sets and
without convexity-like assumptions. However, under the
assumptions of Theorems3.3and3.9, a game may have nei-
ther value nor solution when only pure strategies are played;
see Proposition4.4(a). Therefore, the results of this article do
not follow from the references mentioned in this paragraph.
Moreover, in games studied in this article payoffs may not
be defined for some strategies chosen by players because
payoff functions can be unbounded. In most of the references
mentioned in this paragraph, including in Baye et al. (1993),
Nessah and Tian (2013), and Tian (2015), payoffs or prefer-
ence relations are defined for all strategies players can choose
in the game. Note that some of these references provide
significant advances to the theory of nonzero-sum games
and consider relaxed versions of semi-continuity assump-
tions on payoff functions such as transfer lower and upper
semi-continuity. However, the results are currently available
either for compact decision sets or for convex/concave-like
payoff functions or games with solutions in pure
strategies.

Theorem 3.3 (Existence of a value and solution
for Player I). Let a two-person zero-sum game
{A,B, c} satisfy Assumption2.6(a1,a2) and

ĉ♯(𝜋A) ≥ v♯ for all 𝜋
A ∈ P

U(A). (3.7)

Then the game{A,B, c} has the value v, that is,
equality (2.11) and, therefore, equalities (2.12)
hold. Moreover, if Assumption2.8holds, then the
setP♯

v(A), which is a subset ofPS(A), is the set of
solutions for Player I, andP♯

v(A) is a nonempty
convex compact subset ofP(A).

The proof of Theorem3.3 is provided in Section5.

Corollary 3.4 (Compactness of the set
P♭

v(B)). Let the assumptions of Theorem3.3
and Assumption2.6 (b1, b2) hold. Then, in
addition to the conclusions of Theorem3.3,
the setP♭

v(B) is a nonempty convex compact
subset ofP(B).

Proof. Since all the conditions of Theorem3.3
are also assumed in the corollary, the con-
clusions of Theorem3.3 hold. In particular,
the game has the value. The additional
conclusions follow from Theorem2.7 (a)
applied to the game{B,A,−cA↔B} introduced
in Remark2.13. ▪

The following assumption is symmetric to Assumption2.8,
and Corollary 3.6 from Theorem 3.3 is symmetric to
Theorem3.3.

Assumption 3.5. ĉ♭(𝜋B) < v♭ for all 𝜋
B ∈

PU(B).

Corollary 3.6 (Existence of a value and solu-
tion for Player II). Let a two-person zero-sum
game{A,B, c} satisfy Assumption2.6 (b1,b2)
and

ĉ♭(𝜋B) ≤ v♭ for all 𝜋
B ∈ P

U(B). (3.8)

Then the game{A,B, c} has the value v. More-
over, if Assumption3.5holds, then the setP♭

v(B),
which is a subset ofPS(B), is the set of solutions
for Player II, andP♭

v(B) is a nonempty convex
compact subset ofP(B).

Proof. The corollary follows from Theorems3.3
applied to the game{B,A,−cA↔B}. ▪

The following statement

ĉ♭(𝜋B) = −∞ for all 𝜋
B ∈ P

U(B), (3.9)

is similar and symmetric to statement (2.18). Note that state-
ment (3.9) holds if and only if P♭

𝛼
(B) ⊂ PS(B) for each

𝛼 ∈ R. The following theorem is similar and symmetric to
Theorem3.1.

Theorem 3.7 (Sufficient conditions for
Assumption 3.5).Assumption3.5holds if at least
one of the following assumptions is satisfied:

(C) either assumption (L) or assumption (U)
holds;

(B1) there exist𝛾B ∈ (0,1), LB > 0, and a0 ∈
A such that for each b∈ B

c−(a0,b) ≤ 𝛾Bĉ♭(b) + LB; (3.10)

(B2) there exist𝛾B ∈ (0,1), LB > 0, and𝜋A

0 ∈
P(A) such that
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500 FEINBERG ET AL .

∫
A

max{0, ĉ♯(a)}𝜋A

0 (da) < +∞, and

ĉ⊟(𝜋A

0 ,b) ≤ 𝛾Bĉ♭(b) + LB, (3.11)

for each b∈ B;
(B3) there exist𝛾B ∈ (0,1) and MB > 0 such

that for each𝜋A ∈ P(A) and𝜋B ∈ P(B)

ĉ♭(𝜋B) ≤ 𝛾Bĉ⊟(𝜋A
, 𝜋

B) +MB; (3.12)

(B4) there exists a functionΨB ∶ R → R such
that ΨB(s) > −∞, if s > −∞, and for
each𝜋A ∈ P(A) and𝜋B ∈ P(B)

ΨB(ĉ♭(𝜋B)) ≤ ĉ⊟(𝜋A
, 𝜋

B); (3.13)

(B5) if ĉ♭(𝜋B) > −∞ for 𝜋
B ∈ P(B), then

ĉ⊟,♭(𝜋B) > −∞.

Moreover, Assumption (B5) is equivalent to
statement (3.9).

The proof of Theorem3.7 is provided in Section5.

Remark3.8. Assumptions (C), (B1)…(B5) are
useful for applications. A two-person zero-sum
game {A,B, c} satisfies Assumption (L)
(Assumptions3.5, (U), (C), (B1), (B2), (B3),
(B4), (B5) respectively) if and only if the game
{B,A,−cA↔B} introduced in Remark2.13 sat-
isfies Assumptions (U) (Assumptions2.8, (L),
(C), (A1), (A2), (A3), (A4), (A5) respectively).

The following theorem describes sufficient conditions for
the existence of a solution for a game and the structure of the
solution set.

Theorem 3.9 (Existence of a solution for
a game). Let a two-person zero-sum game
{A,B, c} satisfy Assumptions2.6 (a1,a2,b1,b2)
and2.8, 3.5. Then:

(i) the game{A,B, c} has a value v∈ R and
a solution(𝜋A

, 𝜋
B) ∈ P

♯

v(A) × P♭

v(B);
(ii) the setsP

♯

v(A) and P♭

v(B) are nonempty
convex compact subsets ofP(A) andP(B)
respectively; moreover,P♯

v(A) ⊂ PS(A)
andP♭

v(B) ⊂ PS(B);
(iii) a pair of strategies(𝜋A

, 𝜋
B) ∈ PS(A) ×

PS(B) is a solution for the game{A,B, c}
if and only if𝜋A ∈ P

♯

v(A) and𝜋B ∈ P♭

v(B).

The proof of Theorem3.9 is provided in Section5.

Remark3.10. As explained in Remark2.9,
inf-compactness inaof the functionc(a,b) stated
in Assumption2.6 (a2) is close to the neces-
sary condition for the existence of a solution for
Player I. If the functionc is bounded above on
A × B, then the setA is compact. The similar
observation takes place for sup-compactness inb
of the functionc(a,b) stated in Assumption2.6

(b2), the existence of a solution for Player II, and
compactness of the setB. We observe that the
expected payoff̂c(𝜋A

, 𝜋
B) is well-defined for all

pairs of strategies(𝜋A
, 𝜋

B) ∈ P(A) × P(B) if
and only if the functionc(a,b) is bounded either
from above or from below onA × B. In these
two cases, the setsA andB are compact respec-
tively. If the function c is bounded onA × B,

then under Assumption2.6 (a2,b2) both deci-
sion sets are compact. So, for a problem with two
noncompact decision setsA andB, under natu-
ral inf/sup-compactness Assumption2.6 (a2,b2)
the payoff function is unbounded from above and
from below onA × B, and there exist pairs of
strategies(𝜋A

, 𝜋
B) ∈ P(A)×P(B)with undefined

values ofĉ(𝜋A
, 𝜋

B).

If the function c is bounded above or below onA × B,

then Assumptions2.8 and 3.5 hold; see Theorems3.1 and
3.7. As follows from these observations and Remark2.9,
Theorems3.3,3.9 and Corollary3.4 imply several known
results for games with two compact decision sets and with at
least one compact decision set. In particular, Theorems3.3
and Corollary3.6 imply Glicksberg•s theorem: for a game
with two compact decision sets the value exists if the payoff
function is upper (or lower) semi-continuous. IfA andB are
subsets of Polish spaces, then Theorem3.9 implies Mertens
et al. (2015, Theorem I.2.4) stating that the game has a solu-
tion if A andB are compact sets,c is a real-valued function
bounded from below or from above, and Assumption2.6
(a1,b1) hold (that is, for eachb ∈ B the functiona → c(a,b)
is lower semi-continuous, and for eacha ∈ A the function
b → c(a,b) is upper semi-continuous). Indeed, ifc is a
real-valued function bounded from below or bounded from
above, then, in view of Theorems3.1 (L, U) and 3.7(C),
Assumptions2.8 and3.5 hold, and, if the setsA andB are
compact, then Assumption2.6 (a1) implies Assumption2.6
(a2), and Assumption2.6 (b1) implies Assumption2.6
(b2). We also remark that Mertens et al. (2015, Theorem
I.2.4) is a more general statement that the version of von
Neumann•s theorem for mixed strategies, which states
the existence of a solution, if the decision sets are com-
pact and the payoff function is continuous; Owen (1982,
Theorem IV.6.1) or Petrosyan and Zenkevich (2016,
Theorem 2.4.4).

The following corollary from Theorem3.9 generalizes
Feinberg et al. (2022, Theorem 20).

Corollary 3.11 (Existence of a solution for
a game). Let a two-person zero-sum game
{A,B, c} satisfy Assumption2.6 (a1,a2,b1,b2).
If, in addition, the payoff function c is bounded
either below or above onA×B, then the conclu-
sions of Theorem3.9hold.

The proof of Corollary3.11is provided in Section5.
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FEINBERG ET AL . 501

As explained in Remark2.9, if the function c is
bounded above (below) in Corollary3.11, then the setA
(B) is compact. The following example demonstrates that
Assumption2.6 (b2) is essential in Corollary3.11when the
functionc is bounded below onA ×B. Of course, this is also
true for Assumption2.6(a2) when the functionc is bounded
above onA × B.

Example 3.12. This example describes a
two-person zero-sum game{A,B, c} with the
payoff functionc bounded from below onA × B

and satisfying Assumption2.6 (a1,a2,b1). How-
ever, the functionb → c(a,b) is not sup-compact
on B for eacha ∈ A, andP♭

v(B) = ∅. Therefore,
this game has no solution.

Let A = B ∶= R, and

c(a,b) ∶= 1+ a2 −
exp(b)

1+ exp(b)
, a,b ∈ R.

Note that the functionc takes positive values and
it is continuous onR2

. Moreover, the function
a → c(a,b) is obviously inf-compact onR for
eachb ∈ R. However, for eacha ∈ R the func-
tion b → c(a,b) is not sup-compact onR because
for everya ∈ R the set{b ∈ R ∶ c(a,b) ≥
0} = R is not compact.

The setP♭

v(B) is empty. Indeed, direct calcula-
tions imply thatv♯ = v♭ = 0 andĉ♭(𝜋B) = 1 −
∫

R

exp(b)
1+exp(b)

𝜋
B(db) for each𝜋B ∈ P(R). Therefore,

P
♭

v(B) = {𝜋B ∈ P(R) ∶
∫

R

exp(b)
1+ exp(b)

𝜋
B(db) = 1} = ∅,

where the last equality holds because𝜋
B(R) =

1 and exp(b)
1+exp(b)

< 1 for eachb ∈ R. The game

{A,B, c} has no solution since the setP♭

v(B) is
empty.

4 NUMBER GUESSING GAME

In this section, we consider the following game to illustrate the
results of this article. Two players select nonnegative numbers
a andb, and Player I pays the amount ofc(a,b) = 𝜑(a − b)
to Player II. For example, if the player, who selects the larger
number wins, that is,𝜑(a − b) = I(a > b), this game does
not have a value; see for example, Yanovskaya (1974). We
apply the results of our article to such games. In particular,
for a polynomial function𝜑, Proposition4.4completely char-
acterizes all the situations when the games have values and
solutions.

Since both decision setsA = B ∶= R+ = [0,+∞)
are not compact, the only previously available result on
the existence of the solution is Aubin and Ekeland (1984,
Theorem 6.2.7), which assumes Assumption2.6 (a1,a2),
the concavity ofc(a,b) in a and convexity ofc(a,b) in b.
Under these conditions, there exists a pure solution for the

game. Another simple sufficient condition, under which a
two-person zero-sum game{A,B, c} has a pure solution, is
A = B ∶= R+ and the functionc(a,b) is nondecreasing in
a and nonincreasing inb. In this case it is optimal for each
player to select the decision 0. These arguments are applicable
to Example3.2.

The examples provided in this section may satisfy neither of
the two described sufficient conditions. In addition, according
to Proposition4.4, solutions in pure strategies may not exist
for the provided examples.

Example 4.1. Let A = B ∶= R+ andc(a,b) ∶=
𝜑(a− b) for eacha,b ∈ R+, where𝜑 ∶ R → R

is a continuous function. To be consistent with
assumptions (iv, v) in Definition2.1, assume that

−∞ < lim inf
s→+∞

𝜑(s) and lim sup
s→−∞

𝜑(s) < +∞. (4.1)

The triple {A,B, c} is a two-person zero-sum
game introduced in Definition2.1 because the
functiona → c(a,b) is bounded below onA for
eachb ∈ B, if the first inequality in (4.1) holds,
and the functionb → c(a,b) is bounded above
on B for eacha ∈ A, if the second inequality in
(4.1) holds.

Proposition 4.2. Consider the two-person
zero-sum game defined in Example4.1. Then:

(a) if 𝜑(s) → +∞ as s → +∞, then
Assumption2.6 (a1,a2) and therefore the
conclusions of Theorem2.7hold;

(b) if 𝜑(s) → +∞ as s → +∞ and 𝜑(s) =
𝜑1(s) + 𝜑2(s) for each s∈ R, where𝜑1 ∶
R → R is increasing and𝜑2 ∶ R →
R is bounded, then the assumptions and
therefore the conclusions of Theorem3.3
hold;

(c) if 𝜑(s) → +∞ as s→ +∞, 𝜑(s) → −∞
as s→ −∞, and𝜑(s) = 𝜑1(s) + 𝜑2(s) for
each s∈ R, where𝜑1 ∶ R → R is increas-
ing and𝜑2 ∶ R → R is bounded, then the
assumptions and therefore the conclusions
of Theorem3.9hold.

The proof of Proposition4.2 is provided in Section5.

Example 4.3. Consider Example4.1 with the
function𝜑 being a polynomial of a degreeM =
1,2, … , that is,𝜑(s) =

∑M
n=0𝛼nsn

, s∈ R, where
𝛼n ∈ R, n = 0, … ,M, andaM ≠ 0.

Proposition 4.4. Consider the two-person
zero-sum game defined in Example4.3.

(a) If the integer M is odd and𝛼M > 0,
then this game satisfies the assumptions
of Theorem3.9, and therefore the conclu-
sions of Theorem3.9 hold for this game.

 15206750, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22111 by Suny Stony B

rook U
niversity, W

iley O
nline L

ibrary on [14/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



502 FEINBERG ET AL .

Furthermore, if M≥ 3 and𝛼1 < 0, then
there is no pure solution for this game.

(b) If the integer M is even or𝛼M < 0, then this
game does not satisfy either assumption
(iv) or assumption (v) from Definition2.1,
and there is no finite value because either
|v♭| = +∞ or |v♯| = +∞.

The proof of Proposition4.4 is provided in Section5.
We note that in the two-person zero-sum game from

Proposition4.4 (a) action 0 for each Player strongly domi-
nates any other action large enough and after elimination of
these actions we have a compact game. On the other hand,
let us consider the two-person zero-sum game defined in
Example4.1. If the assumptions of Proposition4.2 (c) hold,
and for eachs∗ ∈ R ⧵ {0}

lim inf
s→±∞

(𝜑(s) − 𝜑(s+ s∗))

< 0 < lim sup
s→±∞

(𝜑(s) − 𝜑(s+ s∗)), (4.2)

then an any action of each player does not dominates any other
his/her action because, according to (4.2), for eacha∗,a∗ ∈
R+, a∗ ≠ a∗, there existb∗,b∗ ∈ R+ such that

c(a∗,b∗) − c(a∗,b∗) = 𝜑(a∗ − b∗) − 𝜑(a∗ − b∗) < 0

< 𝜑(a∗ − b∗) − 𝜑(a∗ − b∗) = c(a∗,b∗) − c(a∗,b∗),

and, symmetrically, for eachb∗,b∗ ∈ R+, b∗ ≠ b∗, there exist
a∗,a∗ ∈ R+ such that

c(a∗,b∗) − c(a∗,b∗) = 𝜑(a∗ − b∗) − 𝜑(a∗ − b∗)
< 0 < 𝜑(a∗ − b∗) − 𝜑(a∗ − b∗) = c(a∗,b∗) − c(a∗,b∗).

The example of such function is𝜑 = 𝜑1 + 𝜑2 with 𝜑1(s) =
sgn (s) ln(|s| + 1) and𝜑2(s) = sin(s) + sin(

√
2s), s ∈ R.

Indeed, the assumptions of Proposition4.2 (c) are trivial,
inequalities (4.2) hold because𝜑1(s) − 𝜑1(s + s∗) → 0 as
s → ±∞, and𝜑2 satisfies (4.2) for eachs∗ ∈ R ⧵ {0} since
the functionss → sin(s) ands → (

√
2s) have commensurable

prime periods.
We notice that Aubin and Ekeland (1984, Theorem 6.2.7)

cannot be applied in most cases to the examples considered in
this section because it assumes concavity ofc(a,b) in a and
convexity ofc(a,b) in b. For example, assume that the func-
tion 𝜑 is twice differentiable, as this holds in Example4.3.
Then 𝜕

2
𝜑(a−b)
𝜕a2 = 𝜕

2
𝜑(a−b)
𝜕b2 . Therefore, the convexity/concavity

assumption implies that these derivatives are equal to 0, and
𝜑(a− b) = M(a− b) +C. ForM > 0 this game is covered by
Proposition4.4(a), anda = b = 0 is the solution. ForM < 0
this game is covered by Proposition4.4 (ii), and there is no
solution.

We also remark that the last claim of Proposition4.4 (a),
which states nonexistence of a pure solution, in some sense
complements the result by Dreshen, Karlin, and Shapley (see
Parrilo,2006, Theorem 2.2) that states that, for a game with
A = B = [0,1] and with a polynomial payoff functionc,
there exists a solution(𝜋A

, 𝜋
B) with 𝜋

A and𝜋B having finite

supports. In the case of a polynomial function𝜑 defined in
Example4.3, each of these finite supports consists of no more
than(M + 1) points.

5 PROOFS

This section consists of four subsections. Section5.1provides
the proofs of Theorems3.1,3.3, and3.7, Section5.2provides
the proofs of Theorem3.9and Corollary3.11, and Section5.3
provides the proofs of Propositions4.2and4.4.

5.1 Proofs of Theorems 3.1, 3.3, and 3.7

The proof of Theorem3.1 is based on Lemmas5.1…5.3.

Lemma 5.1. Consider a two-person zero-sum
game {A,B, c}. If 𝜋

A ∈ PS(A), then either
ĉ⊞,♯(𝜋A) < +∞ or infb∈B ĉ⊟(𝜋A

,b) > −∞.

Proof. On the contrary, let̂c⊞,♯(𝜋A) = +∞ and
infb∈B ĉ⊟(𝜋A

,b) = −∞ for a strategy𝜋A ∈
PS(A). Then for eachn = 1,2, … there exist two
pointsb(1)n ,b(2)n ∈ B such that̂c⊞(𝜋A

,b(1)n ) ≥ 2n

andĉ⊟(𝜋A
,b(2)n ) ≤ −2n

. Let us consider the prob-
ability measures𝜋B

i (B) =
∑∞

n=12−nI{b(i)n ∈ B}
for B ∈ (B), i = 1,2. We define𝜋B = 1

2
(𝜋B

1 +
𝜋

B

2 ). Then, by Fubini•s theorem,̂c⊞(𝜋A
, 𝜋

B

1 ) =∑∞
n=1𝜋(b

(1)
n )ĉ⊞(𝜋A

,b(1)n ) ≥
∑∞

n=12−n2n = +∞.

Therefore,̂c⊞(𝜋A
, 𝜋

B

1 ) = +∞, andĉ⊞(𝜋A
, 𝜋

B) =
1
2
ĉ⊞(𝜋A

, 𝜋
B

1 ) +
1
2
ĉ⊞(𝜋A

, 𝜋
B

2 ) = +∞. Similarly,
ĉ⊟(𝜋A

, 𝜋
B

2 ) = −∞ which impliesĉ⊟(𝜋A
, 𝜋

B) =
−∞. Thus,𝜋A ∉ PS(A). ▪

Lemma 5.2. Assumption (A5) of Theorem3.1is
equivalent to statement (2.18).

Proof. Statement (2.18) is equivalent to its con-
trapositive statement

if ĉ♯(𝜋A) < +∞ for 𝜋
A ∈ P(A), then 𝜋

A ∈ P
S(A).

(5.1)
Let Assumption (A5) hold. Suppose𝜋A ∈ P(A)
satisfies the inequalitŷc♯(𝜋A) < +∞. Observe
that𝜋A ∈ PS(A). Indeed, sincêc♯(𝜋A) < +∞,

then Assumption (A5) implieŝc⊞(𝜋A
, 𝜋

B) < +∞
for each𝜋B ∈ P(B), that is,𝜋A ∈ PS(A). Thus,
statement (5.1) holds.

Now let statement (5.1) hold. We consider an
arbitrary 𝜋A ∈ P(A) satisfying the inequality
ĉ♯(𝜋A) < +∞. Then, in view of (5.1), 𝜋A ∈
PS(A). Lemma5.1implies that either̂c⊞,♯(𝜋A) <
+∞ or infb∈B ĉ⊟(𝜋A

,b) > −∞. To complete the
proof of the validity of Assumption (A5), it is suf-
ficient to show that the latter inequality implies
the former one. Indeed, let infb∈B ĉ⊟(𝜋A

,b) >
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FEINBERG ET AL . 503

−∞. Therefore,ĉ⊞,♯(𝜋A) = supb∈B
{ĉ(𝜋A

,b) −
ĉ⊟(𝜋A

,b)} ≤ ĉ♯(𝜋A) − infb∈B ĉ⊟(𝜋A
,b) < +∞.▪

Lemma 5.3. For a two-person zero-sum game
{A,B, c}, the following implications hold for the
assumptions introduced in Theorem3.1:

(U) ⇒ (A1)⇒ (A2)⇒ (A3) ⇒ (A4)⇒ (A5). (5.2)

Proof. •(U) ⇒ (A1)Ž: If the function c is
bounded above onA × B, then inequality (3.3)
takes place forLA = max{0, sup{c(a,b) ∶ a ∈
A,b ∈ B}} ∈ [0,+∞), for all 𝛾A ∈ (0,1), and
for all b0 ∈ B.

•(A1) ⇒ (A2)Ž: assumption (A1) implies
assumption (A2) with𝜋B

0 = 𝛿{b0} since (3.3)
becomes the second inequality in (3.4), and the
first one becomeŝc♭(b0) > −∞, which is true in
view of (2.3).

•(A2) ⇒ (A3)Ž: Let us fix arbitrary𝜋A ∈
P(A), 𝜋B ∈ P(B) and prove that

𝛾Aĉ⊞(𝜋A
, 𝜋

B) ≤ ĉ♯(𝜋A) + LA −
∫

B

min{0, ĉ♭(b)}𝜋B

0 (db).

(5.3)
Note that

sup
b∈B

c+(a,b) = max{ĉ♯(a),0}, a ∈ A. (5.4)

Indeed, ifĉ♯(a) ≤ 0, thenc(a,b) ≤ 0 for eachb ∈
B, and both sides of (5.4) equal 0. Ifĉ♯(a) > 0,
then the setB+(a) ∶= {b ∈ B ∶ c(a,b) > 0} =
{b ∈ B ∶ c+(a,b) > 0} is nonempty, and for
eacha ∈ A

sup
b∈B

c+(a,b) = sup
b∈B+(a)

c+(a,b) = sup
b∈B+(a)

c(a,b)

= sup
b∈B

c(a,b) = ĉ♯(a) = max{ĉ♯(a),0};

these equalities follow from the basic properties
of suprema and the definition ofB+(a).

Equality (5.4) implies that for all𝜋A ∈ P(A)
and for all𝜋B ∈ P(B)

ĉ⊞(𝜋A
, 𝜋

B) =
∫

A
∫

B

c+(a,b)𝜋B(db)𝜋A(da)

≤
∫

A
∫

B

max{ĉ♯(a),0}𝜋B(db)𝜋A(da)

=
∫

A

max{ĉ♯(a),0}𝜋A(da). (5.5)

The second inequality in (3.4) implies

𝛾A max{ĉ♯(a),0} ≤ ĉ⊞(a, 𝜋B

0 ) + LA, a ∈ A. (5.6)

The integration of both sides of (5.6) in 𝜋
A ∈

P(A) leads to

𝛾A
∫

A

max{ĉ♯(a),0}𝜋A(da) ≤ ĉ⊞(𝜋A
, 𝜋

B

0 ) + LA

= ĉ(𝜋A
, 𝜋

B

0 ) − ĉ⊟(𝜋A
, 𝜋

B

0 ) + LA. (5.7)

Observe that

−∞ <

∫
B

min{0, ĉ♭(b)}𝜋B

0 (db)

=
∫

A
∫

B

min{0, ĉ♭(b)}𝜋B

0 (db)𝜋A(da) ≤ ĉ⊟(𝜋A
, 𝜋

B

0 ),

(5.8)

where the first inequality in (5.8) is the first
inequality in (3.4), the equality follows from inte-
grating the constant in𝜋A

, and the last inequality
follows from the second inequality in (2.3).

Inequalities (5.7) and (5.8) imply that

𝛾A
∫

A

max{ĉ♯(a),0}𝜋A(da) ≤ ĉ(𝜋A
, 𝜋

B

0 )

+ LA −
∫

B

min{0, ĉ♭(b)}𝜋B

0 (db). (5.9)

Observe that−∞ < ĉ(𝜋A
, 𝜋

B

0 ) ≤ ĉ♯(𝜋A) because
of (5.8) and the definition of̂c♯(𝜋A). Therefore,
inequalities (5.5) and (5.9) imply (5.3).

Let us choose𝛾A ∈ (0,1) and MA ∶=
max{LA − ∫B min{0, ĉ♭(b)}𝜋B

0 (db),1} > 0. Note
that the first inequality in (3.4) implies MA <

+∞. Thus (3.5) follows from (5.3).
•(A3) ⇒ (A4)Ž: Inequality (3.6) follows from

(3.5) if we setΨA(s) ∶= 1
𝛾A

(s + MA) for each

s∈ R.

•(A4) ⇒ (A5)Ž: Inequality (3.6) implies that
ĉ⊞,♯(𝜋A) ≤ ΨA(ĉ♯(𝜋A)) < +∞ if ĉ♯(𝜋A) < +∞.▪

Proof of Theorem3.1. The equivalence state-
ment follows from Lemma5.2.

•(L) ⇒ (A3)Ž: assumption (L), stating bound-
edness below of the functionc, means that there
exists a real number𝛾 ≥ 0 such thatc(x,a) ≥
−𝛾 > −∞ for all (a,b) ∈ A × B. This inequal-
ity implies that c(a,b) + 𝛾 ≥ c+(a,b) for all
(a,b) ∈ A × B. By integrating both sides of
the last inequality in𝜋A ∈ P(A) and taking the
supremum inb ∈ B, we haveĉ♯(𝜋A) + 𝛾 ≥

ĉ⊞,♯(𝜋A) for all 𝜋A ∈ P(A). Therefore, for an
arbitrary fixed𝛾A ∈ (0,1) andMA ∶= 𝛾 we have
that𝛾Aĉ⊞(𝜋A

, 𝜋
B) ≤ ĉ♯(𝜋A) +MA for each𝜋A ∈

P(A) and𝜋B ∈ P(B), that is, assumption (A3)
holds.

The remaining statements of Theorem3.1 fol-
low from Lemma5.3. ▪

Proof of Theorem3.3. Condition (3.7) directly
implies formula (2.16). In view of Theorem2.7,
the value of the gamev exists and the setP♯

v(A)
is nonempty and convex. Therefore, according to
Assumption2.8 and (2.17), P

♯

v(A) ⊂ PS(A). As
follows from Definitions2.3and2.4, P♯

v(A) is the
set of solutions for Player I. ▪
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The following corollary follows from Lemma5.3.

Corollary 5.4. For a two-person zero-sum game
{A,B, c},

(L) ⇒ (B1)⇒ (B2)⇒ (B3)⇒ (B4)⇒ (B5). (5.10)

Proofs of Theorem 3.7 and Corol-
lary 5.4. According to Remark3.8, Theorem3.7,
and Corollary 5.4 follow respectively from
Theorem3.1and Lemma5.3applied to the game
{B,A,−cA↔B} introduced in Remark2.13. ▪

5.2 Proofs of Theorem 3.9 and Corollary 3.11

Proof of Theorem3.9. Theorem3.3 states the
existence of the value. It also states thatP

♯

v(A)
is the set of the solutions for Player I,P

♯

v(A) ⊂
PS(A), andP

♯

v(A) is a nonempty convex compact
subset ofP(A). Corollary 3.6 states thatP♭

v(B)
is the set of the solutions for Player II,P♭

v(B) ⊂
PS(B), andP♭

v(B) is a nonempty convex compact
subset ofP(B).As explained in the paragraph fol-
lowing formula (2.22), P

♯

v(A)×P
♭

v(B) is the set of
all solutions for the game. ▪

Proof of Corollary3.11. The corollary directly
follows from Theorems3.1, 3.7, and3.9. Indeed,
Theorems 3.1 and 3.7 imply that Assump-
tions 2.8 and 3.5 hold. Therefore, all assump-
tions of Theorem3.9 hold because, in addi-
tion, the game{A,B, c} satisfy Assumption2.6
(a1,a2,b1,b2). ▪

5.3 Proofs of Propositions 4.2 and 4.4

We start this subsection with some definitions and auxiliary
lemmas. We recall that for metric spacesX andY a function
f ∶ X×Y → R is calledK-inf-compact onX×Y, if for every
compact setK ⊂ X this function is inf-compact onK × Y;
see Feinberg et al. (2013, Definition 1.1,2022, Definition 1).
A function f ∶ X × Y → R is calledK-sup-compact on
X × Y, if the function−f is K-inf-compact onX × Y; see
Feinberg et al. (2022, Definition 2). We would like to clar-
ify that in this article we considerK-inf-compactness and
K-sup-compactness on the setX ×Y, which the the graph of
the set-value mappingΦ ∶ X → 2Y with Φ(x) = Y for all
x ∈ X, while in Feinberg et al. (2013, 2022) these definitions
were considered for the graph of an arbitrary multifunction
Φ, whereΦ ∶ X → 2Y ⧵ {∅} in Feinberg et al. (2013) and
X ∶ Φ → 2Y in Feinberg et al. (2022). We observe that, if a
functionf ∶ X × Y → R is K-inf-compact (K-sup-compact)
on X × Y, then for eachx ∈ X the functiony → f (x, y)
is inf-compact onY. This follows from the observation that
every singletonK = {x}, x ∈ X, is compact.

Lemma 5.5 (Feinberg et al.,2022). The func-
tion f ∶ X×Y → R is K-inf-compact onX×Y if
and only if the following two assumptions hold:

(i) f ∶ X ×Y → R is lower semi-continuous;
(ii) if a sequence{x(n)}n=1,2,… with values in

X converges inX and its limit x belongs to
X, then each sequence{y(n)}n=1,2,… ⊂ Y

satisfying the condition that the sequence
{f (x(n), y(n))}n=1,2,… is bounded above, has
a limit point y∈ Y.

The following lemma is the main technical fact in this
subsection.

Lemma 5.6. Let A = B ∶= R+ and c(a,b) ∶=
𝜑(a − b) for each a,b ∈ R+, where𝜑 ∶ R →
R is a continuous function. Then the following
statements hold:

(i) if 𝜑(s) → +∞ as s→ +∞, then the func-
tion (b,a) → c(a,b) is K-inf-compact on
B ×A;

(ii) if 𝜑(s) → −∞ as s→ −∞, then the func-
tion (a,b) → c(a,b) is K-sup-compact on
A × B;

(iii) if 𝜑(s) = 𝜑1(s) + 𝜑2(s) for each s∈ R,

where𝜑1 ∶ R → R is increasing and𝜑2 ∶
R → R is bounded, then assumptions (A1)
and (B1) from Theorems3.1and3.7hold;

(iv) if there exist s∗ < 0 < s∗ such that𝜑(s∗) >
𝜑(s∗), then the game{A,B, c} has no pure
solution.

Proof.

(i) We verify the conditions of Lemma5.5
to prove K-inf-compactness of the func-
tion c(a,b) = 𝜑(a − b). This func-
tion is continuous, and therefore it is
lower semi-continuous. Consider a sequence
{b(n)}n≥1 that converges tob ∈ B and
a sequence{a(n)}n≥1 ⊂ A such that
{𝜑(a(n) − b(n))}n≥1 is bounded above. Since
the sequence{b(n)}n≥1 ⊂ R+ converges, it
is bounded. Since the sequence{𝜑(a(n) −
b(n))}n≥1 is bounded above, then the continu-
ity of the function𝜑 ∶ R → R on R and
the property𝜑(s) → +∞ ass→ +∞ imply
that the sequence{a(n) −b(n)}n≥1 is bounded
above. Thus, the sequence{a(n)}n≥1 ⊂ R+ is
bounded above and therefore it is bounded.
Therefore, the sequence{a(n)}n≥1 has an
accumulation pointa ∈ A. Thus, the
assumptions of Lemma5.5are verified, and
the functionc is K-inf-compact.

(ii) This statement follows from (i) applied to the
game{B,A,−cA↔B}.
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(iii) First, we prove that assumption (B1) holds.
Let the function𝜑 be the sum of the func-
tions𝜑1 and𝜑2 described in the statement.
Then for eachb ≥ 0

c♭(b) = inf
a≥0
{𝜑1(a− b) + 𝜑2(a− b)}

≥ inf
a≥0

𝜑1(a− b) + inf
a≥0

𝜑2(a− b)

= 𝜑1(−b) + inf
a≥0

𝜑2(a− b) = c(0,b)

+ inf
a≥0

𝜑2(a− b) ≥ c(0,b) − B,

whereB > 0 is a constant such that|𝜑2(s)| ≤
B for eachs ∈ R. We note that the sec-
ond equality holds because the function𝜑1

is increasing. Therefore, for eachb ≥ 0

c−(0,b) ≤ 1
2

c−(0,b) ≤ 1
2

c♭(b) + B
2
.

This implies that assumption (B1) holds.
Second, assumption (A1) holds because it is
equivalent to assumption (B1) for the game
{B,A,−cA↔B}, which holds because the
real function𝜑1 is increasing if and only if
the real functions → −𝜑1(−s) is increasing,
and the function𝜑2 is bounded if and only if
the functions → −𝜑2(−s) is bounded.

(iv) There exists∗, s∗ ∈ R such thats∗ < 0 < s∗

and𝜑(s∗) > 𝜑(s∗). Then for eacha,b ≥ 0

c♭(b) = inf
a∗≥0

𝜑(a∗ − b) ≤ 𝜑(s∗),

c♯(a) = sup
b∗≥0

𝜑(a− b∗) ≥ 𝜑(s∗).

Therefore,

sup
b≥0

c♭(b) ≤ 𝜑(s∗) < 𝜑(s∗) ≤ inf
a≥0

c♯(a),

that is, the game{A,B, c} has no pure solu-
tion. ▪

Proof of Proposition4.2.. (a) In view of
Lemma 5.6 (i), the function (b,a) → c(a,b)
is K-inf-compact on B × A. This implies
Assumption2.6 (a1,a2). Statement (b) follows
from Lemma 5.6 (i,iii). Statement (c) follows
from Lemma5.6(i-iii). ▪

Proof of Proposition4.4. (a) This state-
ment follows from Proposition4.2 (a) and
Lemma5.6(iv).

(b) Let us consider three cases (c1…c3).
(c1) LetM be even and𝛼M > 0. Then condi-

tion (v) from Definition2.1does not hold because
the functionb → c(a,b) is not bounded above on
R for eacha ≥ 0.Since the function𝜑 is bounded
below onR, the valueĉ(𝜋A

, 𝜋
B) is well-defined

for all (𝜋A
, 𝜋

B) ∈ P(A) × P(B) and

sup
𝜋

B∈P(B)
inf

𝜋
A∈P(A)

ĉ(𝜋A
, 𝜋

B) = inf
𝜋

A∈P(A)
sup

𝜋
B∈P(B)

ĉ(𝜋A
, 𝜋

B) = +∞.

(5.11)
Indeed, if we set𝜋B(B) ∶= 2

𝜋

∫B
1

1+b2 db for each
B ∈ (B), then for alla ∈ A

ĉ(a, 𝜋B) = 2
𝜋 ∫R+

𝜑(a− b)
1+ b2

db= +∞.

Therefore, ĉ♭(𝜋B) = inf
𝜋

A∈P(A) ĉ(𝜋A
, 𝜋

B) =
infa≥0 ĉ(a, 𝜋B) = +∞, and

+∞ ≤ ĉ♭(𝜋B) ≤ sup
𝜋

B
∗ ∈P(B)

ĉ♭(𝜋B
∗ ) = sup

𝜋
B∈P(B)

inf
𝜋

A∈P(A)
ĉ(𝜋A

, 𝜋
B)

≤ inf
𝜋

A∈P(A)
sup

𝜋
B∈P(B)

ĉ(𝜋A
, 𝜋

B).

Thus equalities (5.11) hold.
(c2) If M is even and𝛼M < 0, then con-

dition (iv) from Definition 2.1 does not hold
because the functiona → c(a,b) is not bounded
below onR for eachb ≥ 0. Since the function
𝜑 is bounded above onR, the valueĉ(𝜋A

, 𝜋
B)

is well-defined for all(𝜋A
, 𝜋

B) ∈ P(A) × P(B).
Moreover, by the symmetric reasonings, which
follow from case (c1),

sup
𝜋

B∈P(B)
inf

𝜋
A∈P(A)

ĉ(𝜋A
, 𝜋

B) = inf
𝜋

A∈P(A)
sup

𝜋
B∈P(B)

ĉ(𝜋A
, 𝜋

B) = −∞.

(c3) If M is odd and𝛼M < 0, then condi-
tions (iv,v) from Definition 2.1 do not hold.
Moreover, the lower value for this game in pure
strategies equals−∞, and the upper value for this
game in pure strategies equals+∞. ▪
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