Е.Ю. Зайченко

КОМПЛЕКС МОДЕЛЕЙ И АЛГОРИТМОВ ОПТИМИЗАЦИИ ХАРАКТЕРИСТИК СЕТЕЙ С ТЕХНОЛОГИЕЙ MPLS

Введение

К современным телекоммуникационным технологиям предъявляются требования передачи разных видов информации (аудио, видео и данных) по общим каналам связи с помощью унифицированного транспортного механизма и обеспечения при этом заданного качества обслуживания (Quality of Service) — а именно средней задержки T_{cp} и её вариации. Существующие сетевые технологии такие, как IP, Ethernet, Frame Relay, Token Ring не в состоянии обеспечить требуемое качество обслуживания. Первой технологией, которая позволила обеспечить заданное качество обслуживания, стала технология ATM (Asynchronous Transfer Mode). В ней впервые были введены различные категории сервиса и показатели качества обслуживания [1]. Однако, высокая стоимость коммуникационного оборудования сетей ATM, а также жесткое ограничение на раз мер передаваемых блоков даннях — ячейки 53 байта не позволили ей получить широкое применение в современных компьютерных сетях.

Поэтому на смену ей в конце 90-х годов была создана новая технология многопротокольной коммутации меток (Multiprotocol Label Switching-MPLS), свободная от недостатков, свойственных технологии ATM [2]. Её отличительными особенностями являются:

- 1) введение различных категорий потоков классов обслуживания (Class of Service);
- 2) возможность обеспечения заданного качества обслуживания QoS для разных категорий;
- 3) предоставление единого транспортного механизма для передачи разных видов информации и наконец возможность работы с различными сетевыми технологиями и протоколами (Frame Relay, Ethernet, IP, ATM) [1].

Важными задачами, которые приходится решать в процессе построения сетей MPLS являются задачи анализа и оптимизации их характеристик, и в частности, оптимальный выбор пропускных способностей каналов связи и распределение потоков различных классов по каналам (РП) при ограничениях на заданные показатели качества. Впервые эти задачи были сформулированы и решены для обычных глобальных сетей Л. Клейнроком [3].

Для сетей с технологией ATM комплекс моделей и алгоритмов анализа и оптимизации был и разработан в работах Е.Ю. Зайченко [1]. Вместе с тем специфика

технологии MPLS и, в частности, наличие различных классов обслуживания, введение приоритетного их обслуживания не позволяет непосредственно применить известные методы и алгоритмы, разработанные для технологии ATM. Анализ литературы по сетям MPLS показал, что в настоящее время отсутствуют методы и алгоритмы, учитывающие специфику технологии MPLS и позволяющие решать задачи их анализа и оптимизации. Поэтому целью настоящей статьи является развитие и обобщение моделей и алгоритмов анализа и оптимизации характеристик сетей ATM на сети с технологией MPLS.

1. Аналитические модели оценки показателей качества сети с технологией MPLS

Для решения задач анализа и оптимизации характеристик сетей с технологией MPLS по качеству обслуживания (QoS) необходимо прежде всего было разработать аналитические модели оценки показателей качества для разных классов сервиса в зависимости от интенсивности входных потоков, пропускных способностей каналов, распределения потоков (РП) по каналам связи. В работах автора были получены зависимости средней задержки пакетов двух классов приоритетов VBR и ABR в сетях ATM от интенсивности входящих потоков и пропускных способностей каналов связи [1].

Обобщим модели показателей качества для любого количества классов приоритетов. Пусть у нас есть канал связи в котором обслуживается N потоков данных с относительными приоритетами P_i . Поток данных в канале (r,s) с приоритетом i обозначим как f_{rs}^i , общую пропускную способность - μ_{rs} . Для удобства приоритеты расставим следующим образом:

$$p_0 > p_1 > \dots > p_N$$
.

Выбор обслуживания потоков различных классов с относительными приоритетами определяется спецификой работы маршрутизаторов сети LSR. обслуживания пакетов различных классов происходит с относительными приоритетами (т.е без прерывания), т.е обслуживания (передачи очередного пакета) LSR не прерывает обслуживание его при поступлении пакетов более высокого приоритета до его завершения.

Для получения аналитических выражений для средней задержки пакетов k -го приоритета введем следующие допущения:

1. Входящие потоки в узле сети всех классов – Пуассоновские с интенсивностью $h_{ij}^{(k)}$.

2. Обслуживание в канале связи (r,s) распределено по показательному закону, с интенсивностью μ_{rs} (Мбит/с).

где μ_{rs} - пропускная способность каналов связи (r,s) .

3. Времена обслуживания пакета в разных каналов связи (КС) – статистически независимые случайные величины.

При таких допущениях, используя аппарат теории массового обслуживания, запишем выражение для задержки в канале (r,s) потоков разных приоритетов [3,4]:

$$p_0: t_{rs}^0 = \frac{f_{rs}^0}{(\mu_{rs} - f_{rs}^0)\mu_{rs}}, \tag{1}$$

$$p_{j}: t_{rs}^{j} = \frac{\sum_{k=0}^{j} f_{rs}^{k}}{(\mu_{rs} - \sum_{k=0}^{j-1} f_{rs}^{k})(\mu_{rs} - \sum_{k=0}^{j} f_{rs}^{k})}.$$
 (2)

Пусть задана матрица требований по передачи информационного потока l-го приоритета $H_l = \left\|h_{ij}^l\right\|$. Используя эти выражения в работе [5] получено окончательное выражение для средней задержки потока k-го приоритета в сети:

$$T_{cp,k} = \frac{1}{H_{\Sigma}^{(k)}} \sum_{(r,s) \in E} \frac{f_{rs}^{(k)} \sum_{i=1}^{k} f_{rs}^{(i)}}{\left(\mu_{rs} - \sum_{i=1}^{k-1} f_{rs}^{(i)}\right) \cdot \left(\mu_{rs} - \sum_{i=1}^{k} f_{rs}^{(i)}\right)},$$
 (3)

где
$$H^{(k)}_{\Sigma} = \sum_{j=1}^n \sum_{i=1}^n h^{(k)}_{ij}$$
 - суммарная интенсивность входящего потока k .

 $f_{\mathit{rs}}^{(i)}$ - поток i-го класса приоритета в канале связи (r,s) .

Тогда, на основе полученного общего выражения, средняя задержка для потоков высшего приоритета составляет:

$$\overline{T}_{0} = \frac{1}{H_{\Sigma}} \sum_{(r,s) \in E} \frac{f_{rs}^{0} \sum_{k=0}^{rs} f_{rs}^{k}}{\mu_{rs} (\mu_{rs} - f_{rs}^{0})}, \quad (4)$$

где
$$H_{\Sigma}^{(0)} = \sum_{i=1}^{n} \sum_{j=1}^{n} h_{ij}^{(0)}$$
.

Вместе с тем недостатком данного выражения является то, что в нем не учитываются задержки в коммутаторах, связанные с обработкой поступающих пакетов и их коммутацией, а учитываются задержки, связанные с ожиданием освобождения каналов связи. Поэтому обобщим данное выражение на общий случай.

Выведем выражение для средней задержки в маршутизаторе (LSR).

Пусть входящие потоки в маршутизаторе LSR_i - пуассоновские с интенсивностями $\{\lambda_{rS}\}$, а (производительность) интенсивность обслуживания в LSR (пак/с) μ_i . Будем считать, что узел связи - LSR_i и описывается моделью M/M/n/1, где n – число входящих потоков.

Тогда средняя задержка в узле LSR_i определится как [4].

$$\overline{T} = \frac{1}{\mu_i - \Lambda_i} , \qquad (5)$$

где $\Lambda_i = \sum_{\forall s:(s,i) \in E} f_{si}$ - суммарная интенсивность входящего потока в

маршутизатор i.

Средняя задержка во всех LSR для заданной пары (i, j) на маршруте m_{ii} .

$$\overline{T}_{ij} = \sum_{\forall r \in m_{ij}} \overline{T}_r = \sum_{r \in m_{ij}} \frac{1}{\mu_r - \Lambda_r} . \tag{6}$$

Тогда средняя задержка во всех маршутизаторах для произвольной пары "источник - адресат" определится:

$$\overline{T}_{cp} = \sum_{j=1}^{n} \sum_{i=1}^{n} \overline{T}_{ij} P_{ij} \quad , \tag{7}$$

где P_{ij} - вероятность установления сеанса (i,j) .

$$P_{ij} = \frac{h_{ij}}{H\Sigma} \ . \tag{8}$$

И подставляя (6) и (8) в (7) получим:

$$T_{\rm cp} = \frac{1}{H_{\Sigma}} \sum_{i=1}^{n} \frac{\Lambda_i}{\mu_i - \Lambda_i} \ . \tag{9}$$

Тогда средняя задержка в сети MPLS для потоков k-ого класса приоритета с учетом задержки во всех маршутизаторах на коммутацию составит:

$$T_{cp}^{(k)} = \frac{1}{H_{\Sigma}^{(k)}} \left(\sum_{(r,s) \in E} \frac{f_{rs}^{(k)} \sum_{i=1}^{K} f_{rs}^{(i)}}{\mu_{rs} - \sum_{i=1}^{K} f_{rs}^{(i)}} \right) \left(\mu_{rs} - \sum_{i=1}^{K} f_{rs}^{(i)} \right) + \sum_{i=1}^{n} \frac{\Lambda_{i}^{(\kappa)}}{\mu_{i} - \Lambda_{i}^{(\kappa)}} \right). \tag{10}$$

Получим выражение для доли вероятности потери пакетов разных классов.

Вероятность потери пакетов k-го класса в КС (r,s) будет равна вероятности состояния, когда все виртуальные каналы выделенные под поток k-го класса в линии связи (r,s) будут заняты равна [1,5]:

$$P_{nom_{r,s}^{(k)}} = P_0 \cdot \left(\frac{f_{rs}^{(k)}}{\mu}\right)^{n_k} \cdot \frac{1}{n_k!} \cdot \left(\frac{f_{rs}^{(k)}}{n_k \mu}\right)^{N_k}, \quad (11)$$

где μ - ПС базового канала (например, $\mu_1 = 1544 \frac{K \delta u m}{c}$); n_k - число каналов в линии связи (r,s) выделенных для передачи потока k -го класса; N_k - объем буфера коммутатора в пакетах под очередь k -го класса; P_0 - нормирующий множитель.

Тогда вероятность того, что не произойдет потерь пакетов k -го класса ни в одном из каналов сети будет равна:

$$\prod_{(r,s)\in E} \left(1 - P_{nom.(r,s)}^{(k)}\right).$$

А вероятность (доля) потерянных пакетов k -го класса будет равна [1,5]:

$$PLR_k = 1 - \prod_{(r,s) \in E} \left(1 - P_{nom.(r,s)}^{(k)}\right).$$
 (12)

2. Постановка обобщенной задачи РП

Рассмотрим общую постановку задачи распределения потоков с ограничениями на среднюю задержку и долю потерянных пакетов, которая отличается от известной [5] учетом задержки в коммутаторах.

Задана сеть в виде графа G(X,E) $X=\left\{x_j\right\}$ - множество узлов связи (УС), $E\{(r,s)\}$ - множество каналов связи (КС), заданы пропускные способности каналов связи $\{\mu_{rs}\}$ и матрица требований в распределении потоков всех классов $H(k)=\left\|h_{ij}(k)\right\|$ $i,j=\overline{1,n}$, где $h_{ij}(k)$ - интенсивность потока k-го класса, который необходимо передавать из УС X_i в узел X_j (Кбит/с).

Требуется найти такие маршруты передачи и распределения потоков всех классов $F(k) = [f_{rs}(k)]$, при которых обеспечиваются ограничения на среднюю задержку $T_{cp,k} \leq T_{k,3a\partial}$, и на долю (вероятность) потери пакетов k-го класса $PLR_k \leq PLR_{k,3a\partial}$.

3. Алгоритм решения обобщенной задачи РП

В работе [5] был предложен алгоритм решения обобщенной задачи РП для потоков k классов при ограничениях на:

$$T_{cp,k} \le T_{k,3a\partial},$$
 (13)

$$PLR_k \le PLR_{k,3a\partial}$$
. (14)

Этот алгоритм состоит из 2k этапов. Его особенностью состояла в том, что на каждом из этапов проводилось распределение потоков k-го класса по одному из ограничений (8) или (9). Его недостаток заключается в том, что если на этапе (2k-1) мы распределяем поток k-го класса при ограничении $T_{cp,k} \leq T_{k,3a\partial}$, а затем на этапе 2k мы распределяем поток F(k) по ограничению $PLR_k \leq PLR_{k,3a\partial}$, то новое распределение потоков $\widetilde{F}(k)$ может нарушить предыдущее ограничение (13). И необходимо дополнительное распределение потоков с тем, чтобы обеспечить выполнение ограничения (13). Это требует дополнительных затрат машинного времени и нерационально. Поэтому ниже предлагается усовершенствованный алгоритм РП, в котором на каждом этапе ищется распределение потоков F(k) с учетом одновременно обоих ограничений (13) и (14).

Описание алгоритма.

Алгоритм состоит из K этапов, по числу классов сервиса K, на каждом из которых находятся распределения потоков k -го класса F(k) при ограничениях (8) и (9).

0 шаг.
$$F_1(0) = 0$$
; $H_1(0) = 0$.

Этап состоит из $2C_n^2 = n(n-1)$ итераций, на каждой из которых находим распределение потоков от очередного требования h_{ij} , $i,j=\overline{1,n}$, $i\neq j$.

1-я итерация

1. Находим начальную условную метрику: $l_{rs}(1) = \lambda \frac{\partial T_{cp,1}}{\partial f_{rs}^{(1)}} + (1-\lambda) \frac{\partial PLR_1}{\partial f_{rs}^{(1)}}$, где $\lambda \in [0;1]$.

Как видим, данная метрика является выпуклой комбинацией двух метрик $\dfrac{\partial T_{cp,1}}{\partial f_{rs}^{(1)}}$ и $\dfrac{\partial PLR_1}{\partial f_{rs}^{(1)}}$.

В качестве начального значения $\,\lambda\,$ можно выбрать $\,\lambda=0,5\,.$

- 2. Определяем кратчайшие пути в данной метрике между всеми узлами $\pi_{ij}^{\min}(1)$.
- 3. Выбираем первое требование из матрицы $H_1 = \left\|h_{ij}^1\right\|$, например $h_{i_1j_1}$. Находим кратчайший путь $\pi_{i_1j_1}^{\min}$, распределяем поток от требования $h_{i_1j_1}$ и находим начальное распределение потоков:

$$f_{rs}^{(1)}(1) = \begin{cases} f_{rs}^{(1)}(0) + h_{i_1 j_1} = h_{i_1 j_1}, ecnu(r, s) \in \pi_{i_1 j_1}^{\min}; \\ f_{rs}^{(1)}(0) = 0, e \text{ противном случае.} \end{cases}$$
(15)

Конец первой итерации. Переходим ко второй итерации.

r -я итерация

Пусть уже проведены (r-1) итерация, распределены потоки от (r-1) требований матрицы $H^{(1)}$ и найдено РП $f_{rs}^{(1)}(r-1)$.

1. Определим условную метрику:

$$l_{rs}^{(1)}(r) = \lambda \frac{\partial T_{cp,1}}{\partial f_{rs}^{(1)}} + (1 - \lambda) \frac{\partial PLR_1}{\partial f_{rs}^{(1)}} | f_{rs} = f_{rs}^{(1)}(r - 1). \quad (16)$$

- 2. Выбираем очередное требование $h_{i_rj_r}$ из матрицы H(1) и находим кратчайший путь $\pi_{i_rj_r}$ в метрике $l_{rs}^{(1)}(r)$.
- 3. Распределяем поток от требования $h_{i_rj_r}$ по пути $\pi_{i_rj_r}$ ш находим новый поток $F_1(r)$:

$$f_{rs}^{(1)}(r) = \begin{cases} f_{rs}^{(1)}(r-1) + h_{i_r j_r}^a, ecлu\ (r,s) \in \pi_{i_r j_r}^{\min};\\ f_{rs}^{(1)}(r-1), в противном\ случае. \end{cases},$$

где $h^a_{i_rj_r}=\min\left\langle h_{i_rj_r};Q_{pe3}\left(\pi^{\min}_{i_rj_r}\right)
ight
angle$ - величина части требования $h_{i_rj_r}$, которая

передается по пути $\pi_{i_r j_r} \min$

Конец r-й итерации.

Остальные итерации первого этапа выполняем аналогично до полного исчерпания требований матрицы H(1) . Обозначим полученный поток $F_1 = \left[f_{rs}^{(1)}\right]$.

Проверяем выполнение ограничений:

$$T_{cp}(F_1) \le T_{1.3a\partial}, \qquad (17)$$

$$PLR(F_1) \le PLR_{1.3a\partial}$$
. (18)

Если ограничения (17) и (18) выполняются, то конец этапа 1, переход к следующему этапу 2. Иначе проводим дополнительную оптимизацию потока F_1 .

Пусть, например, ограничение (17) не нарушается, а ограничение (18) нарушается.

Тогда изменяем весовые коэффициенты метрики $\lambda \to \lambda_1 = 0.25$, $\lambda_2 = 1 - \lambda_1 = 0.75$ и повторяем этап 1. Либо, проводим оптимизацию по критерию $PLR_1 \to \min$ при ограничениях $T_{cp}\left(F_1\right) \leq T_{1,\,3a\partial}$.

Для этого введем штрафную функцию:

$$g(T_{cp}(F_1)) = \max\{0; (T_{cp,1} - T_{1,3aa})\}^2,$$

И используем в качестве минимизируемой функцию вида:

$$PLR(F_1) + r_k g(T_{cp}(F_1)),$$

$$r_k = r_{k-1}\beta; \quad \beta > 1; \quad r_0 = 1.$$

ЭТАП k

Пусть проведено k-1 этапов и найдены распределения потоков от первых (k-1)-го требований $F_1, F_2, ..., F_{k-1} = \left[f_{rs}^{(k-1)}\right]$.

Найдем распределение потоков k -го класса. Этап состоит из n(n-1) итераций.

1-я итерация

- 1. Находим начальную условную метрику: $l_{rs}^{k}(1) = \lambda \frac{\partial T_{cp,k}}{\partial f_{rs}^{(k)}} + (1-\lambda) \frac{\partial PLR_{k}}{\partial f_{rs}^{(k)}}$ (19), где $\lambda \in [0;1]$.
- 2. Находим кратчайшие пути в данной метрике между всеми узлами $\pi_{ij}^{\min}(k)$.
- 3. Выбираем первое требование $h_{i_1j_1}$ из матрицы $H_k = \left\|h_{ij}^k\right\|$. Находим кратчайший путь в метрике (19) $\pi_{i_1j_1}^{(k)\,\mathrm{min}}$.

Определяем пропускную способность пути $\pi_{i_1,j_1}^{(k)\min}$:

$$Q_{pes}\left(\pi_{i_{1}j_{1}}^{\min}\right) = \min_{(r,s) \in \pi_{i_{1}j_{1}}^{\min}(k)} \left\{\mu_{rs} - \sum_{i=1}^{k-1} f_{rs}^{(i)}\right\} - \epsilon.$$

4. Распределяем поток от требования $h_{i_1j_1}^{(k)}$ величиной $h_{i_1j_1}^{(a)}$, где $h_{i_1i_1}^a = \min \left\{ h_{i_1i_1}^{(k)}; Q_{pes}\left(\pi_{i_1i_1}^{\min}\right) \right\}$ и вычисляем новую величину потока:

$$f_{rs}^{(k)}(1) = \begin{cases} f_{rs}^{(k)}(0) + h_{i_1 j_1}^{(k)}, ecnu \ (r,s) \in \pi_{i_1 j_1}^{(k) \min}; \\ f_{rs}^{(k)}(0) = 0, в \ npomuвном \ cлучае. \end{cases}$$

Конец 1-ой итерации.

Остальные требования выполняются аналогично до полного исчерпания $\text{требований в матрице } H(k) = \left\| h_{ij}(k) \right\| \ i,j = \overline{1,n} \ .$

В результате получаем распределение потоков $F(k) = [f_{rs}(k)]$. Далее проверяем выполнение ограничений:

$$T_{cp}(F_k) \le T_{k,3a\partial},$$
 (20)
 $PLR(F_k) \le PLR_{k,3a\partial}.$ (21)

Если оба ограничения выполняются то STOP, конец работы алгоритма. Иначе переход к дополнительной оптимизации распределения потока F(k).

Допустим, что нарушено условие (20). Тогда используем метрику:

$$l_{rs}^{(k)H} = \frac{\partial T_{cp}}{\partial f_{rs}^{(k)}}.$$
 (22)

И дальше осуществляем оптимизацию распределения потоков F(k) по критерию $\min T_{cp,k}$.

- 1. Вычисляем кратчайшие пути $\pi_{ij}^{\min^H}(k)$ в метрике $l_{rs}^{(k)\mu}$ (22).
- 2. Проверяем возможность дополнительной оптимизации РП по критерию $T_{cp,k}$, для этого проверяем условие:

$$\sum_{(r,s)\in E} l_{rs}^{H} f_{rs}^{(k)} < \sum_{(r,s)\in E} l_{rs} f_{rs}^{(k)} . \tag{23}$$

Если условие (23) выполняется, то переходим к шагу 3, иначе STOP – задача неразрешима.

3. Ищем такую пару (i_s, j_s) для которой:

$$\sum_{(r,s)\in\pi_{i_{s},j_{s}}^{H}} l_{rs}^{(i_{s},j_{s})} < \sum_{(r,s)\in\pi_{i_{s},j_{s}}^{\min}} l_{rs}^{(i_{s},j_{s})}, \qquad (24)$$

где $\pi^{\min}_{i_S,j_S}$ - длина кратчайшего пути между парой (i_S,j_S) в прежней

метрике, $\pi^{\scriptscriptstyle H}_{i_S,j_S}$ - длина кратчайшего пути в новой метрике $l_{rs}^{(k)\scriptscriptstyle H}$.

4. Перенаправляем поток от требования h_{i_S,j_S} со старого маршруга $\pi^{\min}_{i_S,j_S}$ на новый $\pi^H_{i_S,j_S}$ и вычисляем новое распределение потоков:

$$f_{rs}^{(k)^H} = \begin{cases} f_{rs}^{(k)}(k) + h_{i_s j_s}, ecnu(r,s) \in \pi_{i_s j_s}^H \land (r,s) \notin \pi_{i_s j_s}^{\min} \\ f_{rs}^{(k)}(k) - h_{i_s j_s}, ecnu(r,s) \in \pi_{i_s j_s}^H \land (r,s) \in \pi_{i_s j_s}^{\min} \\ f_{rs}^{(k)}, e n p o m u e h o M c луча e. \end{cases}$$

5. Проверяем условие: $T_{cp}(F_k^H) \le T_{k,3a\partial}$ (25).

Если (25) выполняется, то конец, иначе на шаг 4 и выбор другого требования (i,j) для которого выполняется (24).

Шаги 4-6 повторяем до тех пор, пока, условие (24) перестанет выполняться. Обозначим через $F^*(k)$ полученное в результате новое распределение потоков k -го класса.

Если $T_{cp}(F^*(k)) \leq T_{k,3a\partial}$ и $PLR(F^*(k)) \leq PLR_{k,3a\partial}$, то конец работы алгоритма, в противном случае, задача РП неразрешима при заданных ПС каналов связи, матрица требований H(k) и введенных ограничениях $T_{k,3a\partial}$ и $PLR_{k,3a\partial}$.

4. Задача выбора пропускных способностей каналов связи и распределения потоков

Одной из целей внедрения технологии MPLS обеспечение заданного качества обслуживания потоков различных классов. Высокая стоимость телекоммуникационного оборудования сетей MPLS — маршрутизаторов и каналов связи, стремление наилучшим образом использовать коммуникационные ресурсы сетей, и в первую очередь пропускные способности КС обусловливает в качестве первоочередной задачу оптимизации использования коммуникационных ресурсов сетей MPLS.

Выше была рассмотрена важная задача оптимального распределения потоков различных классов при ограничениях на среднюю задержку $T_{cp_{\kappa}}$, долю потерянных пакетов CLP_{κ} и заданных пропускных способностях каналов. Такая задача не всегда разрешима вследствие недостаточных пропускных способностей (ПС) отдельных каналов. В этом случае необходимо либо ограничить матрицы потоков входящих требований приведя их в соответствие с наличными ПС, либо модифицировать пропускные способности каналов так, чтобы удовлетворить полностью требования пользователей сети.

Поэтому для обеспечения возможности передачи всех входящих потоков требований с заданными показателями качества при произвольных матрицах требований H(k) необходимо решать комбинированную задачу инжиниринга трафика, в которой одновременно выбираются оптимальные ПС каналов связи и находится соответствующие распределения потоков всех классов. К этим задачам относится комбинированная задача выбора пропускных способностей (ВПС) и распределения потоков (РП).

Поэтому рассмотрим теперь постановку этой задачи, являющуюся развитием соответствующей задачи ВПС РП для сетей ATM.

Задана сеть MPLS в виде орграфа G = (X, E), где $X = \left\{x_j\right\}$ $j = \overline{1,n}$ множество узлов сети, $E = \left\{(r, s)\right\}$ - множество каналов связи (КС), набор пропускных

способностей (ПС) каналов $D = \{d_1, d_2, ..., d_k\}$ и их удельных стоимостей $C = \{c_1, c_2, ..., c_k\}$. Заданы также матрицы требований входящих потоков соответствующих классов $H = \left\|h_{ij}^{(k)}\right\|,\ i,j=\overline{1,n}\,,\ k=\overline{1,K}$ и ограничения на среднюю задержку для классов потоков $T_{cp,k}\,,\ k\in K_1\subset K\,,$ а также ограничения на долю потерянных пакетов различных классов.

Требуется выбрать такие ПС каналов связи $\left\{\mu_{rs}^{(0)}\right\}$ и найти распределение потоков всех классов $F(k) = [f_{rs}(k)]$, при которых стоимость сети будет минимальной, а установленные ограничения на задержки по классам будут выполняться полностью. Математическая модель данной задачи будет иметь следующий вид:

Найти
$$\min C_{\Sigma} = \sum_{(r,s) \in E} C_{rs}(\mu_{rs}),$$
 (26)

при ограничениях

$$T_{cp,\kappa}(F(k), \mu_{rs}) \le T_{3a\partial,k} \quad k = \overline{1,K} ,$$
 (27)
 $PLR(F_k) \le PLR_{k,3a\partial}$ (28)

Описание метода решения комбинированной задачи (ВПС РП)

Данная задача является комбинированной задачей, состоящей из пары задач ВПС и РП. Опишем метод её решения. Он состоит из предварительного этапа и конечного числа однотипных итераций [1].

На предварительном этапе находим пропускные способности каналов связи $\{\mu_{rs}(0)\}$ и начальные распределения потоков всех классов F(k). После того переходим к выполнению первой итерации.

$$(I+1)$$
итерация

Пусть уже проведены I итераций и найдены текущие ПС $\left\{\mu_{rs}(I)\right\}$ и распределение потоков $F_k(l) = \left[f_{rs}^{(k)}(l)\right]$, а также величина общей стоимости $C_{\Sigma}(l)$.

Целью итерации является оптимизация ПС каналов связи и распределения потоков по критерию минимизации стоимости ${m c}_\Sigma$ и проверка признака оптимальности

1. Для заданных ПС $\mu_{rs}(I)$ решаем задачу РП и находим новые распределения потоков всех классов:

$$F_{(k)}(l+1) = \left[f_{rs}^{(k)}(l+1) \right] \quad k = \overline{1, K}$$

- 2. Для найденных потоков $F_{(k)}(l+1)$ решаем задачу ВПС и находим новые ПС всех каналов $\left\{\mu_{rs}(l+1)\right\}$ и стоимость сети $C_{\Sigma}(l+1)=\sum_{(r,s)\in E}C_{rs}(l+1)$.
 - 3. Сравнение. Если $\left|C_{\Sigma}(l)-C_{\Sigma}(l+1)\right|<\epsilon$,

где ε - заданная точность, то конец. Найденные ПС $\{\mu_{rs}(I+1)\}$ и распределение потоков всех классов $F_k(I+1)$ - искомые, и конец работы алгоритма, иначе l=l+1 и переход к следующей итерации.

Таким образом, в результате решения задачи ВПСРП находим одновременно пропускные способности всех каналов связи и распределение потоков всех классов так, чтобы минимизировать стоимость сети в целом, при заданных ограничениях на установленные значения показателей качества обслуживания (QoS) - среднюю задержку в доставке пакетов для всех классов.

5. Экспериментальные исследования предложенных алгоритмов

С целью экспериментального исследования предложенных алгоритмов РП и ВПСРП были разработаны соответствующие программы, которые вошли составной частью в моделирующий программный комплекс MPLS NETBUILDER.

Все эксперименты проводились на сети, которая состояла из 15 узлов, 19 каналов и 3 типов трафика. Она приводится на рис.1.

Рис. 1

В процессе экспериментов изменялась матрица требований H(k) путем умножения на соответствующий коэффициент k .

Первый эксперимент заключался в увеличении коэффициента для требований по передаче трафика класс_1. Этот трафик имеет приоритет 0, следовательно только под него выделяется отдельный тип пропускной способности "сетевое управление". Результаты эксперимента приведены в таблице 1.

Таблица.1

Коэффициент (к1)	Средняя задержка (T_Класс_1,с)
10	0,0002667
20	0,0006484
30	0,0012629
40	0,0023985
50	0,0068935
54	0,023741
55	0,0831388

Следующий эксперимент заключался в увеличении коэффициента для требований из передачи трафика класс_2. Этот трафик имеет приоритет 2, следовательно, он распределяется в общей полосе, оставшейся после распределения потока класс_1. Нужно отметить, что среди трафиков для этого эксперимента, которые распределяются в общую оставшуюся свободную полосу канала связи, трафик класс_2 имеет наивысший приоритет. Результаты эксперимента приведены на рисунках 2 и 3.

Как видно из графиков на рис. 2 и 3 зависимость задержки для трафика класса_2 от интенсивности потока класса_2 носит близкий к линейному характер, а зависимость задержки для менее приоритетного трафика класса_3 (рис.3) является гиперболической, что хорошо согласуется с формулой (10).

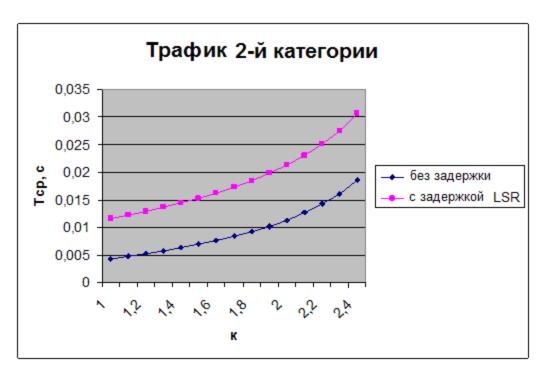


Рис. 2. Средняя задержка трафика 2-й категории.

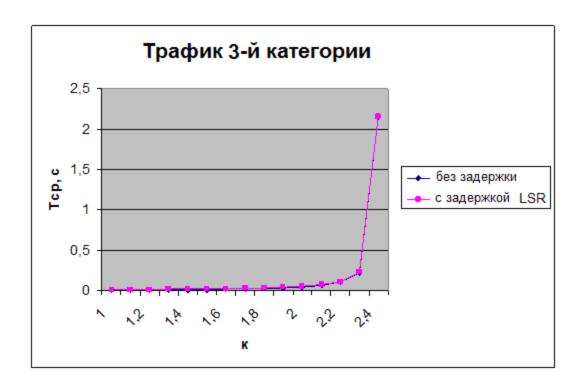


Рис.3. Зависимость средней задержки трафика 3-й категории от K_2

В следующих экспериментах исследовалось влияние производительности маршрутизаторов на общую среднюю задержку сети для трафика 1 и 2 классов. Соответствующие результаты приведены на рис. 4.

Как и следовало ожидать, с ростом производительности маршрутизаторов средняя задержка пакетов разных классов убывает.

Далее проводились сравнительные эксперименты предложенного алгоритма РП с методом РП Л. Клейнрока. С этой целью алгоритм Л. Клейнрока был соответствующим образом доработан так, чтобы он позволял распределять потоки K классов приоритетов. Соответствующие сравнительные результаты приведены на рис 5.

Как видно из приведенных графиков предложенный в работе алгоритм оказывается эффективнее известного алгоритма Клейнрока, соответствующая кривая проходит ниже.

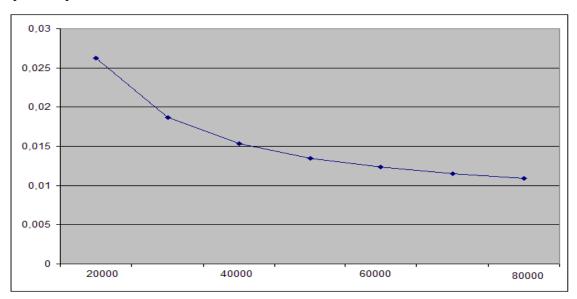


Рис. 4. Зависимость задержки в сети от интенсивности обслуживания в маршрутизаторах

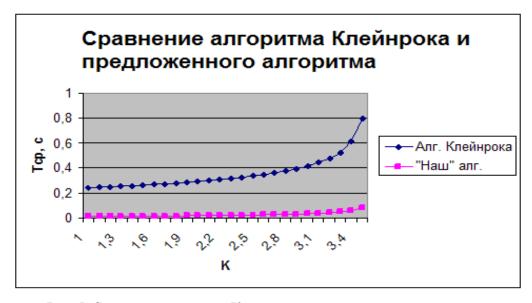


Рис. 5. Сравнение алгоритма Клейнрока и предложенного алгоритма

Выводы

- 1. В работе рассмотрен и исследован ряд задач анализа и оптимизации характеристик сетей с технологией MPLS.
 - Сформулирована задача распределения потоков различных классов сервиса при ограничениях на показатели качества обслуживания (QoS) в сетях MPLS.
- 2. Предложен новый алгоритм её решения, отличающийся от известных учетом задержек в коммутаторах MPLS и одновременным распределением потоков по двум показателям качества средней задержке и доли потерянных пакетов.
- 3. Рассмотрена комбинированная задача ВПСРП для сетей MPLS. и описан алгоритм её решения, учитывающий специфику этой технологии.
- 4. Проведены экспериментальные исследования предложенных алгоритмов и сравнение с известным методом, результаты которых представлены в работе.

Литература

- 1.Зайченко Е.Ю. Сети АТМ: Моделирование, анализ и оптимизация. Киев ЗАТ «ВИПОЛ».-2003.-224с
- 2. Олвейн Вивьен. Структура и реализация современной технологии MPLS. Перевод с английского. Изд. дом «Вильямс», 2004. 480 с.
- 3. Клейнрок Л. Вычислительные системы с очередями М.: Мир. 1979. 600с.
- 4. Клейнрок Л. Теория массового обслуживания. Пер. с англ. под ред. В.И.Неймана. М.:Машиностроение. 1979. 432 с.
- 5. Зайченко Ю.П., Ахмед А.М. Шарадка. Задача распределения потоков различных классов в сети с технологией MPLS // Вісник національного технічного університету України "КПІ", сер. Інформатика управління та обчислювальна техніка. Вип. 43.-2005.-с.113-123.
- Зайченко Е.Ю. Оптимизация характеристик сетей с технологией АТМ. Системні дослідження та інформаційні технології. – 2002. - №3.