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1 Introduction

Development, formal presentation and design of immune and hybrid immune systems suggests the presence of three
components (Figure 1): 1) the scheme of the components of the AIS; 2) one or more measures to quantify the states of
the system (affinity and measures to evaluate the fitness), and 3) immune algorithms that control the behaviour of the
system.
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Fig.1 Structural components of AIS

The presentation accepted for immune cells and molecules, 1s an expanded version of the approach of the shape-
space. Currently, the most frequently used are four main types of shape-space: real-valued shape-space, integer shape-
space, symbolic shape-space. In addition to these forms can be used and more complex types of shape-space, such as
neural networks, fuzzy neural network, fractal shape-space and shape-space of DNA. In this paper the optional choice
for shape-space 1is selected based on RBF neural network architecture. Shape-space 1s a formalism designed to represent
those parts of immune cells or molecules that determine the properties allowing the cell to recognize or to be recognized
by other elements.

2 Theoretical Part
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As shown in [1], the application of gradient methods of local search that are used to construct neuromodels in some
cases i1s unacceptable or impossible. The generalized optimization problem of synthesis of a neural network on the
training set can be formulated as follows:

Net = Net(M, 2, B,A,A), M
for which
£(Net, X,¥ )— min,, @

where M is a matrix that determines the presence of synaptic connections between elements of the system (receptors,
neurons), {2= Q(M) is a matrix of weights, which correspond to those present in the network; B = B(M) is biases

vector of the neural network; A = A(M) 1s a vector of the discriminant functions of elements of the neural network;

A= A(M) is a vector of activation function for neural network; & (Nel‘, A, Y ) is a criterion for determining the

effectiveness of a neural network model to approximate the relationship between inputs X' and their corresponding
parameter vector of output values Y.

The optimality criterion for a neural network model using the mean square error:

¢ = i(yp — e, )F .

(3)

where ‘Pp is a set of values for the pr -th instance; y(Nel‘, ‘Pp) 1s a value of neural network output btained for the set

of values ‘Pp .

2.1 Synthesis of computational structures using immune algorithms for solving forecasting
problem

An important point in the process of forecasting is the selection of forecasting method. Depending on the properties of a
time series, as well as the requirements for the process (for example, the required accuracy of the forecast or the rate of
the forecasting) will be determined by the effectiveness of a method and quality of solutions obtained. In addition, a
well known fact that the quality of forecasts can be improved by combining the (combination) of the results obtained by
different methods. Neural network constructed on the radial basis (RBF network) is a powerful tool for approximating
multidimensional nonlinear functions. They have a fairly simple architecture and have a high speed training. Block
diagram of RBF network 1s shown in Figure 2. The RBF network consists of input, single hidden (radial basis) and
linear (output) layers. The input layer consists of sensors that connect the network with the external environment. The
neurons of hidden layer operate on the principle of centering on the elements of the training sample. The centers are

supported by the weight matrix (7). The reactangular (dist) is used for calculating the Euclidean distance between
input vector (X) and the corresponding center. Around each center there is a region called the radius. Radius (sensitivity

of the network) is adjusted by means of the smoothing coefficients vector: (O' o ) The transfer function (usually

[ERE

_(x—c)2

Gaussian, f(x)=e 20° ), is varying in the range from O to 1, and it determines the output of a hidden layer. The

output layer contains usual linear or sigmoidnye neurons; by adjusting their weights (Wj) we determine the network
output.
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Fig. 2. Architecture of RBF network

The behavior of RBF network depends on the number and position of radial basis functions of the hidden layer.
Indeed, for any real n-dimensional input vector x = (xp Ky vusy xn) , where x€ X <R, the output of the network
will be determined as follows:

y, = iwfkﬂc(dz'st(x, w,;), O'k), (4)
k=1

where, wi,( eW' i= 1, P is a weight of the linear layer, w, € /7" are centers of radial basis functions. If as a basic

function 1s used the Gaussian function, then:

dist(x, w; ) —_—

Si(x)=- Py k=1 m. (5)
O,

In the context of approximation problem of the network configuration is to find a function, ¥: R, — R, satisfying

equation (5) at p =1. Suppose we have a sample of training data points : X, ..., X, X, € R . If the output values

i

for each of these points of d,, ..., d,, d €W are known, then every basis function can be centered on one point of

X, . Consequently, asymptotically the number of centers, and therefore the hidden layer neurons will be equal to the

number of data points of the training sample, M. In this case there are at least two problems. First, low ability to
generalize as far as the presence of excessive number of neurons in the hidden layer has a negative impact on the
approximation of the new (not participating in the training data), and second, a large size of the training sample will
inevitably cause problems of a computational nature. To overcome these difficulties the complexity of the network
should be reduced by reducing the number of basis functions, which in turn poses a new challenge, that touches upon
their optimal centering. The traditional methods of determining the centers of RBF are: the random selection of vectors
from the set of training data, the application of clustering algorithms working on the scheme of unsupervised learning,
the application of supervised learning. The basic idea of the work is to use an immune network for identification of
centers of radial basis functions, i.e. solving the problem of recognition and clustering, that solves the problem of
determining the number of input values. After that a clonal selection algorithm is used for constructing an optimal
architecture of radial basis neural network (number and type of RBF-neurons in the hidden layer functions) as well as
optimizing the weights and parameters of radial basis functions. As the output layer activation functions, logistic and
linear function activation are used. The traditional methods of determining the RBF centers are: the random selection of
vectors from the set of training data, the application of clustering algorithms working on the scheme of training without
a teacher, and the use of supervised learning schemes.

Table 1. Radial-basis activation function of the inner layer

Gaussian function Multi-quadratic Inverse Multi-quadratic | Spline Cauchy function
function function
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Following the idea of an integrated approach to solving the problem of setting parameters of a neural network, we
used the clonal selection algorithm as a single (global) tool for searching the optimal values for all configurable
parameters. Below 1s a description of the elements of AIS, which must be adapted to the task.

i ARTIFICIAL IMMUN i CLONALSELECTION i
NETWORK ALGORITHM
Problem > II')‘P:-“ i“ _l —> l »  Solution
ata 3 : ! minG [ e 8
i Identification of Centers : i Determining the Number
of Radial Basis :and Type, optimization of :
i Funictions ! i Weights and Parameters
of RBF-functions
\ J \ J

Fig. 3. A generalized scheme of the synthesis and study of radial basis
neural network using clonal selection algorithm and the algorithm of
artificial immune network

Based on the architecture of the neural network (Fig. 2) as adjustable parameters are the following: a) the number of

neurons in the hidden layer (m); b) centers of radial basis functions (W, ); ¢) coefficients of smoothing { &, ); d) types

of basic functions of the hidden layer; &) the weight of output layer (Wfk 3, ) type of activation function of output layer;

g) parameters of the activation function of output layer ().

On the basis of selected parameters could be obtain a structure of an individual ATS as shown in Fig. 2.
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Fig. 4. The structure of the individual (antibody) AIS coding RBF -network

To encode the values by the binary system the precision (bits per value) is highlighted as a parameter setting AIS.
Elements of the string £}, ..., /,, encode the status of the neurons in the hidden layer. The value of "0" corresponds to

the passive or ,,off" (the neuron is not involved in calculating the output value network). The value of "1" shows that
the neuron is active (enabled). This scheme provides an automatic search for the optimal number of hidden elements of
the RBF network. Configured AIS provides only the maximum possible number of these elements. As a target function
and the function of the affinity is selected the standard error of the network on training data. As AIS learning algorithm
is chosen a clonal selection algorithm with the following implementation features: (a) selection is implemented
according to the principle of tournament selection, which makes it possible to manage the convergence of the algorithm
and maintain the diversity of the population at the appropriate level; (b) according to the specific binary coding scheme
that is proposed for mutation, whereby the probability of changing a single bit line depends not only on the affinity of
antibodies in general, but also on the significance of this bit.

Consider the example shown in Fig. 5.
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Fig. 5. Land-line antibody with binary encoding

In this example, the mutation of the bits with indices O or 1 obviously cause more significant changes in selected
parameters than the mutation-bit number 4. When an individual reaches a sufficiently high affinity, more significant bits
should be gradually excluded from the operation of mutation. This can be achieved by reducing the corresponding
probabilities of the operator to the data bits. Formally, this process can be depicted as follows:

2 =pm-(aﬁ+§(a i —aﬁ)Ja (6)

where p, is the probability of mutation of the i-th bits of the parameter in the string antibodies; p is the overall level
of mutation, defined as a parameter of the algorithm; aff is the current affinity for antibodies; [ is precision (bits)

representation encoded parameters; 1s the minimum value of affinity, corresponding to the selected target

function and the function of affinity.

Since in this case we solve the problem of minimizing an approximation error, the minimum value of antibodies
affinity should be consistent with the maximum possible value of the error. Equation (6) provides the same probability
of bit mutation for individuals with low affinity and increases the probability of mutation for less significant bits for
individuals with high affinity (Fig. 6). The types of basic functions and the activation function of a layer are given as
parameters to AIS. As a target function and the function of the affinity selected the standard error of the network on
training data. As a learning algorithm is selected IMS clonal selection algorithm, which has similar features for
implementation as the algorithm developed for the synthesis and training RBF networks.
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Fig. 6. Distribution of the probability of mutation encoded parameters for
individuals with low (a) and higher (b) affinity

Stepwise implementation of clonal synthesis algorithm of predictive neural network models is shown in Figure 7.
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Fig. 7. A block diagram of an immune algorithm synthesis and configuration
of neural networks for solving prediction

The algorithm for evaluating each solution obtained is converted back to individual lines in the structure of the neural network
with the appropriate settings, which is checked for the training set to obtain the mean square approximation error.

3 Experiments
3.1 The description of experimental data

For the pilot study were selected the two time series representing real processes. First some observations on the
volume of monthly sales of tickets American Airlines for 12 years; the series contains 144 observations. Its schedule is
shown in Figure 8.
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Schedule of ticket sales for 12 years

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139
Month

Fig. 8. Some observations on the volume of monthly sales of air tickets

The first 100 observations (70%) series were used as training sample, the remaining 44 cases (30%) were used
as a test sample. The size of the minimum time lag (immersion depth ) was calculated on the basis of the partial

autocorrelation function (PACF). From the PACF values o 213, we have chosen the value d =14 . As a second
example of the data we selected a number of observations of the daily consumption of electricity for one of the regions
in Ukraine. The observations were collected during a year, so the series contains 365 values (Fig. 9).

Schedule of daily electricity consumption for one year
10000
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1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 309 323 337 351 365
Day

Fig. 9. A number of observations of daily consumption of electricity

To study the process we used the observations No. 260-330. The last 35 observations were used as a test
sample. In this case the minimum time lag, o 215, we have chosen the value of « =15 . Further on, based on initial

data, we demonstrated experimentally the convergence of the developed methods and investigated the influence of main
parameters on the ALS learning algorithms.

3.2 The influence of some parameters on the convergence of AIS algorithms

The experiments were set to investigate the influence of three main parameters of AIS: selection pressure,
population size of clones, and the level of mutation. First, we set a high selection pressure equal to 30, the size of the
population of clones equal to 300, and the level of mutation equal to 0.8. In this case the selection of the best antibodies
will occur as follows. After assessing the entire population, 1.e. 50, the antibodies are selected by a certain percentage of
the best of them for subsequent cloning. This percentage is set by parameter "factor of selection of the best antibodies,
which 1n this case is 0.7. Consequently, for cloning we must select, 50 * 0,7 = 35, the best antibodies. The best
antibodies (1.e., those which give the smallest error of approximation on the training data) are chosen by tournament
selection. The tournament selection involves a random selection from the population, the number of antibodies,
specified by the parameter “selection pressure”, and the choice of one of the best out of this amount. The tournament 1is
repeated as many times as antibodies should be selected {(in this case 35 times). 1t follows that the larger the tournament
1s the less likely is a penetration of "weak" antibodies into the population of clones, and the faster should converge the
immune algorithm. Then we set a minimal selection pressure, equal to 2, and compared the results obtained. Figure 10
(a) shows the graphs of convergence of the developed combined algorithm for the problem of forecasting the time series
of ticket sales and Figure 10 (b) shows the similar experiments with a number of observations of daily electricity
consumption. The results show that: (1) developed algorithms converge to the minimum learning error, which proves
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the possibility of their use for solving the apporximation problems; (2) parameter selection pressure can control the rate
of convergence of algorithms that can be effectively used to prevent premature convergence to local optima.

RBF predictor
0,25 0.2

RBF predictor

MSE

0 1 51 101 151 201 251
;| 51 101 151 201 251 Generation
Generation
; : — Selection pressure: 2 - - - - Selection pressure: 50
——— Selection pressure: 2 ----- Selection pressure:50
(a) (b)

Fig. 10. (A) Convergence of the combined algorithms at different levels of
selection pressure (for the time series of the monthly ticket sales); (b)
Convergence of the combined algorithms at different levels of selection
pressure (for the time series of energy consumption)

More studies have been performed touching on dependence of the time spend for learning and loss errors on the test
sample from the population size of clones AIS. In these experiments the rigidity of selection for all algorithms was set
equal to 20; the experimental results are shown in Table 1.

Table 1. A comparative study of the effect size of the population of clones

PMSE
j Population Data B o
Algorithm type ot Pl eie i) Training time | on test sample
RBF-predictor 100 Sales tickets 35¢ 12,65 %
RBF-predictor 300 Sales tickets 120 ¢ 5,34 %
RBF-predictor 100 Electricity consumption 28 ¢ 5,17 %
RBF-predictor 300 Electricity consumption 93¢ 4,26 %

Here PMSE 1s the standard error in percentage, which 1s calculated via the formula:

(M

where [0 is a mean square error (in percentage) for a model on training data; 7 is the size of test sample; V), is the

true value of a variable number; yiM 1s predicted value of a variable estimated with the model.

According to the results shown in Table 1, we can conclude that the increase in population size results in clones on
one hand slows down the learning process, on the other hand in improvement of the generated models quality, judging
on the value of the model error on the test sample. Furthermore, as seen from the table, combined algorithm IMS and
wavelet neural network shows a higher accuracy of prediction than the combined algorithm and RBF network, while the
latter has a higher rate of training. The experiments were conducted with the levels of mutations 0,16 and 4,0. The
graphs of the convergence of combined algorithms for time series of the monthly ticket sales are presented in Figure 11
{a). Under the same conditions the convergence of algorithms for the time series of energy consumption is shown in
Figure 11 (b).
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Fig. 11. Convergence of the combined algorithms at different levels of
mutation: (a) for the time series of the monthly ticket sales; (b) for the time
series of energy consumption

The experimental results show that for a high level of mutation, which implies a high variability of clones of the
population, in most cases the training 1s faster, but the step character of the curve indicates a low stability of the process,
thus decreasing the probability of finding the global optimum. The figure shows that the value of errors corresponding
to the high level of mutation decreases rapidly at the beginning of training. But 1t is falling at a certain time in one of the
local optima, and can not leave it in the future due to the high variability of antibodies, which leads to deterioration in
the quality of training. In fact the mutation is the main driving force behind the evolution of the immune system and
therefore requires more careful adjustment in accordance with the objectives set in the solution of a problem of
forecasting.

4 Conclusion
The main results of this study are as follows:
- the experimental analysis of the problem of finding the settings for RBF neural networks;

- the combined methods of forecasting time series with controlled parameters is proposed, based on the synthesis
of RBF networks using artificial immune systems;

- the results of computational experiments showed the higher effectiveness of the proposed combined methods.
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