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Abstract. An application of the new method and combined algorithm on the basis of inwmmne network and
negative selection for identification of aviation engine surging is considered. The problem of identification of
the engine surging is examined as a problem of anomaly detection. The basic drawbacks of the negative
selection algorithm are examined. It is offered to use the method based on artificial immune network for data
processing of detectors set, and for a monitoring phase the scheme of classical negative selection algorithm
is used. The results achieved have shown high efficiency of the offered method and algorithm.
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1 .1 Introduction and Motivation

The modern methods of gas turbine engine (GTE) diagnostics allow to determine
malfunctions of an engine, identification of the malfunctioning reasons and their
possible subsequent elimination [1]. One of the problems of technical diagnostics of
GTE 1s timely 1dentifying of the surging (pompage). Surging 1s a stalled operating
mode of an avionic GTE, accompanied by infringement of its gas-dynamic stability
of functioning, sharp decrease of thrust and powerful vibrations that may destroy the
engine [2]|. The air stream, flowing around the turbine blades, sharply changes its
direction. Subsequently substantial turbulences are observed inside the turbine, and
the pressure at the compressor input becomes equal or larger than that at its exit.
Instabilities of functioning of a GTE are characterized by the oscillatory processes
producing vibration of an engine body and substantial growth of dynamic load on
elements of a system at specific points that creates conditions for their destruction. In
the pompage mode self-inflammation and self-destruction of a GTE |3, 4] is possible
with high probability. Prevention of the surging demands forecasting and preventing
of approaching the system to this mode. Modemn methods of GTE surging
1dentification are mainly based on diagnostics of any signal or the groups of signals
generated by control devices and gauges. Existing spectral methods of signal
diagnostics are fit well for revealing of the features. However, they become useless
when the signal under study has components that quickly vary at several important
measuring points. Usually the Fourier transform 1s used for spectral analysis of
measurements [5]. More universal method of time-varying signal analysis 1s based on
the wavelet-analysis. Wavelet transform allows perform the following: (1) to locate
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special points where a fault may occur; (2) to reveal irregular changes of a function
and 1its derivatives; (3) to calculate fractal signal characteristics.

In this paper an alternative method of GTE surging identification 1s offered that 1s
based on vibration measurements. We consider identification of an engine surging as
a problem of anomalies detection. In general, the problem of anomaly detection can
be seen as a two class classification problem. Given an element from a given problem
space, the system should classify it as normal or abnormal. However, this is a very
general characterization since it can correspond to very different problems depending
on the specific context where it 1s interpreted. From a statistical point of view the
problem can be seen as that of outlier detection [6]. According to Hawkins, an outlier
1s “... an observation that deviates so much from other observations as to arouse
suspicion that it was generated from a different mechanism” [7]. A common
statistical approach to solve this problem [8] 1s to build a statistical model of the
normal mode and use it to determine if a given observation is an outlier or not;
basically, if the probability of the observation being generated by the normal
distribution 1s low, then the observation is an outlier. A more complex approach can
also model the outlier generation mechanism. In the previous approach, the idea is to
remove any observation that can be classified as an outlier. Another possibility is to
use the methods that accommodate the outliers, 1.e. methods that can produce good
estimates or inferences even in the presence of outliers. This kind of methods belongs
to a more general area of statistics called robust statistics [9, 10]. The outlier
detection point of view implicitly assumes that the data belongs to both normal data
and outliers (which are possibly caused by errors occurred during the data collection
or by noise). The mterpretation of anomaly detection that we are interested in relates
to dynamic context. In this case an anomaly is considered as a state of a given system
that is not consistent with the normal behavior of this system. According to this, an
anomaly detection algorithm will perform a continuous monitoring of the system and
explicit classification of each state as normal or abnormal. Let’s keep in mind that
statistical modeling of the normal can be applied to this definition of anomaly
detection, but the robust statistics approach cannot. The main problem regarding
statistical model constructing is that it needs to make assumptions of distribution
properties of the monitored variables, which in general are unknown. In this work we
propose alternative approach to solution of the problem in view that 1s based on the
combined use of artificial immune network (AIN) and algorithm of negative selection
[6, 16,17, 19].

2 .2 Definition and methods
2.1 Negative Selection Algorithm

The process of negative selection of T-cells 1s responsible for eliminating the T-
cells whose receptors are capable of binding with self-peptides. This process
guarantees that T-cells that leave the thymus do not recognize any self-cell or
molecule. Forrest et al. [12] proposed a change detection algorithm inspired by the
negative selection of T-cells within the thymus. This procedure was named negative

http:/ "1]1]’11521.,kl)i.ll21 Kiﬂi)@,&ii}ﬁ MATCMATHYHHX ;'*x-'i'\i'i"ﬂ;ﬁliﬁ CHCTCMHOTO HE'EIL'!T'I.'%}«'




selection algorithm, and its original application 1s related to computer net security. A
single type of immune cell was modeled: T-cells were represented as L-length strings
of bits. The Forrest and his collaborators negative selection algorithm 1s rather simple
[12]. Given a set of self-peptides, named self-set S, the T-cell receptors will have to
be tested for their capability of binding the self-peptides. If a T-cell recognizes a self-
peptide, it 1s discarded, otherwise it 1s selected as an immuno-competent cell and
enters the available repertoire A. The chart of negative selection algorithm is
illustrated in Fig. 1.
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Fig.1. The negative selection algorithm [15]

The negative selection algorithm can be summarized as follows [11]:

e [nitialization: generate random strings and place them in the set P of immature T-
cells, assuming all the molecules (receptors and self-peptides) are represented as
binary strings of the same length L.

o Affinity evaluation: determine the affinity of all T-cells in V with all elements of
the self-set S.

o (eneration of the available repertoirve: if the affinity of an immature T —cell
(element of P) with at least one self-peptide is greater than or equal to a give cross
reactive threshold, then the T-cell recognizes this self-peptide and has to be
eliminated (negative selection); else the T-cell is introduced into the available
repertoire A.

The process of generating the available repertoire in the negative selection
algorithm was termed by the authors as censoring phase. The algorithm also includes
a monitoring phase. In the monitoring phase, a set S of protected strings is matched
to the elements of the available repertoire A. The set S* might be the own set S, a
completely new set or composed of elements of the set S. If recognition occurs, then
a non-self pattern (string) 1s detected.
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The negative selection algorithm suggests generation of random strings until
repertoire A of appropriate size 1s generated. This approach could be adopted in both
algorithms.

Even random generation of the P repertoire results in algorithms with some
drawbacks. First, this approach results i an exponential cost to generate the available
repertoire A in relation to the number of self strings in S. Second, random
generation of P does not account for any adaptability in the algorithm and neither any
information contained in the set S.

The algorithm of negative selection has also other restrictions and limitations [11].
When 1t 1s not appropriate, for example, the number of self samples 1s small and
sparse.

Some limitations of the (binary) string representation in NS algorithms are as
follows:

e The binary matching rules are not able to capture the semantics of some complex
self/non-self spaces.

e Some difficulties with extracting meaningful domain knowledge.

e In some cases a large number of detectors are needed to guarantee better coverage
(detection rate).

e Difficulties with integrating the NS algorithm with other immune algorithms.
e The crisp boundary of self and non-self may be hard to define.

In real-valued representation the detectors are represented by hyper-shapes in »-
dimensional space. The algorithms use geometrical spaces and use heuristics to
distribute detectors n the non-self space.

Some limitations of the real-valued representation in NS algorithms are:

e The issue of holes in some geometrical shapes, and may need multi-shaped
detectors.

e Curse of dimensionality.
e The estimation of coverage.
e The selection of distance measure.

During our experimental study it has been established that generation of a set of
detectors at training phase occurs casually owing to what 1t 1s in advance impossible
to define 1s minimum necessary quantity of detectors which will provide the
maximum quality of recognition. The increase in quantity of detectors conducts to
delay of a phase of recognition, and its reduction — to deterioration of work of
algorithm. It occurs because the probability of formation of the "cavities" (areas in
the space of "non-self") that are not sensed by detectors increases. Thus, a problem of
the given research is development of advanced method of the detectors generation
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that are adaptive regarding their functionality. The method proposed in the paper 1s
based on artificial immune network.

2.2 The Algorithm of artificial immune network

According to the network theory the immune system 1s composed of a network
whose dynamics is disturbed by foreign antigens [20]. This interaction with foreign
antigens results in the network that corresponds to internal image of the universe of
antigens. Groups of cells and molecules within the immune networks correspond to
antigenic groups. There are basically two levels of interactions in the network: 1) the
interaction with the environment (foreign antigens), and 2) the interaction with other
network elements. The theory of immune network confirms, that even in absence of
external stimulus (pathogenic microorganisms), the immune system is in constant
movement. Its cells are capable to co-operate not only with antigens, but also with
themselves, i.e. to distinguish similar antibodies. As a result of this mutual
recognition of molecules of antibodies the connected network arises within immune
system. The artificial immune network [5, 8] can be presented as a graph which
consists of a set of nodes — cells of the network (antibodies), and a set of weighed
edges meaning communications between the cells. A value of weight of an edge
corresponds to affinity of communication of cells with each other.

The immune networks have two kinds of affinity:
— Aflmity of communication "antigen-antibody" (Ag-A4b) — distinction level.
— Affinity of communication "antibody-antibody" (45-4b) — similarity level.

Formally 1t 1s possible to represent the artificial immune network as follows:

immNET =(P',G*, Lk,m,.8, f.1,7, AG,AB,S,C.M,n,d, H,R) (1)

2

where P’ is the search space (shape-space), G* is the space representation; / is a
length of vector of attribute vector; k 1s a length of a cell receptor;, m1,, 1s size of cell

population; 6 1s expression function; f 1s affinity function; 7/ 1s the function of
nitialization of initial population of cages of a network; 7 1s a stop condition for the
algorithm; 4G 1s a subset of antigens; A5 1s a population of cells of a network
(antibodies); § 1s selection operator; C is cloning operator; A/ 1s the operator of a
mutation; » 1s a quantity of the best cells selected for cloning; & is quantity of the
worst cells that are subject to replacement by new ones; H 1s the operator of clonal
deleting; R 1s the network compression operator.

In the given work we have used the model of artificial immune network learning
offered by L.. N. de Castro and F. J. Von Zuben [15], named aiNet (Artificial Immune
NETwork). The network 1s initialized with a small number of randomly generated
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elements. FEach network element corresponds to an antibody molecule, 1.e. an attribute
string 1s represented in Euclidean shape-space.

The next stage 1s representation of antigenic patterns. Each pattern is presented to each
network cell, and their affinity 1s determined according to (1):

i 2
D= St g @

=1

A number of high affinity antibodies is selected and reproduced (clonal expansion)
according to their affinity: the higher is the affinity, the higher is the number of clones to
be produced. The clones generated undergo somatic mutation inversely proportional to
their antigenic affinity: the higher 1s the affinity, the lower will be mutation rate. A
number of high affinity clones is selected to be maintained in the network, constituting
what 1s defined as a clonal memory.

Then the affinity between all remaining antibodies is determined. Those antibodies
whose affinity 1s less than given threshold are eliminated from the network (clonal
suppression). All antibodies whose affinity with the antigen is less than given
threshold are also eliminated from the network. Additionally a number of new
randomly generated antibodies are incorporated into the network (metadynamics). The
remaining antibodies are incorporated into the network, and their affinity with the
existing antibodies 1s determined. All but one antibody whose affinity 1s less than a
given threshold are elimmated.

The aiNet learning algorithm can be summarized as follows[15]:
1. Initialization: create mitial random population of network antibodies.
2. Antigenic presentation: for each antigenic pattern, do:

2.1.Clonal selection and expansion: for each network element, determine its
affinity with the antigen presented. Select a number of high affinity elements
and reproduce (clone) them proportionally to their affinity.

2.2 Affinity maturation: mutate each clone inversely proportional to affinity.
Re-select a number of highest affinity clones and place them into a clonal
memory set.

2.3 Metadynamics: eliminate all memory clones whose affinity with the antigen 1s
less than a pre-defined threshold.

2.4.Clonal interactions: determine the network interactions (affinity) among all
the elements of the clonal memory set.

2.5.Clonal suppression: eliminate those memory clones whose affinity with each
other 1s less than a pre-specified threshold.

2.6. Network construction: incorporate the remaining clones of the clonal memory
with all network antibodies.

http:/ "lﬂl’l]‘:}’ﬁ.,kl)i.llil Kiﬂi)t‘)j,'i}ﬁ MATCMATHYHHX !‘i-'i'\i'l"('\riliﬁ CHCTCMHOTO EiHZi.'!“i'l.'i}f




3. Network interactions: determine the similarity between each pair of network
antibodies.

4. Network suppression: eliminate all network antibodies whose affinity is less than
a pre-specified threshold.

5. Diversity: introduce a number of new randomly generated antibodies into the
network.

6. Cycle: repeat Steps 2 to 5 until a pre-specified number of iterations is reached.

2.3 The offered combined algorithm of negative selection and AIN

Solution of the surging identification problem by means of the developed
algorithm demands the description of specific implementation of some operators and
functions. In this case the immune network uses antibodies coded with real numbers
(fig. 2) to which the metrics is applied so that to calculate Euclidian distance. Thus,
antibodies form around themselves /-dimensional radial area of recognition with
radius which » called cross-reactive threshold. As it is shown in Fig. 2, cross-reactive
threshold 1s included in the structure of an antibody that gives a chance for adaptive
adjustment of its value. Thus, the immune network fills space of "non-self” with
distinguishing hyperspheres of different radius that gives the chance for its fuller
covering [19].

T Abij Abig Abii

Fig. 2. Representation of antibody of AIN

To calculate the affinity values of communication "antigene-antibody" the
following expression 1s used:

k,
Japag = o + Dgiapag)- 3)

where r s the cross-reactive threshold of an antibody (detector), &, is the coefficient
of 1mportance of the cross-reactive threshold (parameter of algorithm adjustment).
The parameter £, 1s a very important parameter of training. It operates robustness the
recetved decision.

The increase in this parameter forces an immune network to support detectors
of larger radius that gives rougher but more stable solution. However, the excessive
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increase of k£, negatively affects accuracy of a solution found. Fig. 3 illustrates the
influence of parameter £, on the way of detectors generating.

Detectors

Fig. 3. Influence of value of parameter £, on a way of generation of
detectors

The compression of immune network 1s carried out on the basis of self-recognition
of cells which is numerically expressed via affinity communications of antibodies
with each other. For calculation of the affinity value of communication the following
expression 1s offered:

Dyoapapy = Tap +¥ap)
Japap =— 2 1 . 4
“IIN(7y, 7y, )

The following interpretation of values 1s thus possible: f,, ,, <0 means

distinguishing hyperspheres of detectors that are not blocked. This cnoice does not
demand compression since antibodies do not distinguish each other (Fig. 4); if
Jap_ap 15 10 a range of (0, 1), then hyperspheres are blocked by covers, and the value

represents overlapping degree (Fig. 4).

Thus, the compression 1s carried out depending on the size of a parameter of
compression threshold where o 1s a parameter of training algorithm; 1if f,, ,, =1,

5

hyper-sphere of smaller radius () is completely in the hyper-sphere of larger radius
(Fig. 4). In this case the compression 1s necessary as the redundancy of distinguishing
elements 1s observed.

http://mmsa. kt)i ua Ki’i(i)t‘ﬂ;]}ﬁ MATCMATHYHHX {\-'i'c"l"ﬂr?j[iB CHCTEMHOTO aHATI 3y




Japear<=0— 0 < fip.ap < 1 — Compression fipan >= 1 — Compression by

Compression is not depends on degree of removal of the absorbed
required overlapping of detectors detector is made
E E . Ab;
a B G

Fig. 4. The various relative positioning of distinguishing
hyperspheres of detectors

In this specific implementation the operator of clonal deleting A operates only
on those antibodies which distinguish at least one antigen. Thus, it is guaranteed that
a resultant AIN at the end of each generation does not contain the detectors
distinguishing the “self” antigens. The generalized chart of the algorithm offered 1s
shown 1n Fig. 5.
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Fig. 5. The generalized scheme of the combined negative selection algorithm and an

immune network

3 Results of computer experiment
3.1 Solution of the anomalies detection problem

Generally it 1s possible to present the problem of anomalies detection as follows
[6, 7]. Let a discrete number of values of a process variable 1s given by: v, v,,.... ¥, .

It 1s also supposed that discrete values of the variable y(#) belong to the time interval
[¢,.1,]. A given number of measurements time window of width k is k <»n. The
values in the time window form the vector of patterns Y, (yt, Ve i omon W +1). The
vector of patterns corresponds to one of the two classes: normal (1), if the fragment
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of the time series, corresponding to a given vector, does not contain anomalies (1.e.
belongs to the class of "self"), otherwise 1t corresponds to abrormal (O). The time

window 1s moving along time axes with step size, A/, forming a set of vectors which
divide the attribute space into two parts: with anomalies and without them. The
problem is in referencing of any vector, ¥,, formed by the selected sliding window,

to one of the two allocated classes. On the other hand, if we consider the process
under study as a dynamic system, the set of vectors received by means of a sliding
window represents restored phase portrait of dynamic system, and the vectors formed
are the points, belonging to a phase trajectory of the system. In a case of normal
behaviour the given trajectory can be perceived as a reference image, any deviation
from which creates anomalous pattern (Fig. 5). It 1s necessary to stress, that the use of
negative selection allows avoiding the necessity of including into training sample the
vectors, corresponding to abnormal behaviour that gives the chance to recognize any,
even not known in advance anomalies.

3.2 The First experiment

For the first experiment the periodic signal, which graph 1s presented in Fig. 6a,
was chosen [9]. The training sample totals 200 values. This training signal does not
contain anomalies. For creating the training sample the sliding window of two values
width was used. In this case the space of patterns 1s two-dimensional: (y,, ¥, +1). The

appearance of the phase portrait restored is shown in Fig. 6b.
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Fig. 6. An experimental signal, a— the graph of the signal which does not
contain anomalies; b — the restored phase portrait of the signal which does
not contain anomalies
Shown 1n drawing 6b geometric figure 1s a display of data of the class «Self» that
can be used as a training image for artificial immune network. The results of AIN
training for two optional values of the importance cross reactive threshold, &, are

presented in Fig. 7. The Fig. 7a shows less steady solution since a part of the plane,
corresponding to skipped elements of a phase trajectory, 1s blocked by detectors. It
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will lead to their false operation. The solution, shown in Fig. 7b, 1s steadier, and 1s
taken for further testing.

Fig. 7. A configuration of the trained immune network for two optional
values & :(a)—at k, =001;b)—at £, =0.1)
Further on a local anomaly has been added to the signal (Fig. 8a), that has found its
reflexion on a phase portrait, as i1s shown in Figure 8b. In this case two points are

deviated from the phase trajectory and have been recognized by corresponding
detectors.

T T T T T T T T T 1
S0 &0 ki 80 a0 100 MO0 120 13 140 130
t

A B

Fig. 8. The test signal with local anomaly and its phase
portrait

During detection phase a repeated recognition of the abnormal phenomenon by
several detectors simultaneously (Fig. 9a) 1s quite probable. The histogram 1n
drawing 9b shows the number of detectors, which are activated during detection of
anomaly at movement of scanning windows over a signal sequence.
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Fig. 9. Tllustration of the detection phase: a) — recognition of abnormal vectors
by an immune network; b) — the histogram ot detectors activation

3.3 The second experiment

For the second experiment the data have been used recerved on the test bed for
aviation gas turbine engine. The data 1s represented four time series (Vk 3, VK P,
Vv_3, Vv_P). The signals received from gauges of vibration of the support on which
the engine has been fixed. The time series graphs are shown in Fig. 10.

|— VB P ——Vg 3 ===VE P — V& 3|
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1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169 175 181 187 193 199 205 211

Fig. 10. The graphs of time series, representing the
vibration

The data contain 216 values of each signal sampled with 5 ms. The engine
functioning ended with surging. By means of the algorithm developed it 1s necessary
to define an anomaly present in data that could be a surging indicator. For training the
algorithm the interval from 124 to 179 points has been chosen. The training was
performed with various values of sensitivity of the algorithm (%, ). The structure of

the trained immune network for various values of sensitivity 1s presented in Fig. 11.
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Fig. 11. The structure of trained immune network for
various values of

Histograms of detectors activation, averaged on several experiments (Fig. 12).
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Fig. 12. The histograms of detectors activation

In real world conditions it 1s difficult enough to select acceptable sensitivity of
algorithm (&,). Therefore the results were averaged for several various values 4. On

the histograms 1t 1s visible the approach of the surging moment (points 208-216). An
essential anomaly of engine functioning is visible in the interval 55-90, that most
likely became the reason of the engine shutdown.

4 Conclusion

The modified method and algorithm of negative selection has been developed
to solve the problem of anomalies detection in functioning of complex engineering
systems. This method and algorithm for training and anomalies identification uses the
mechanisms of artificial immune networks. The distinctive feature of the algorithm 1s
in updating of training process thanks to which the possibility of adaptive selection of
options 1s implemented as well as the quantities and location of detectors is
determined. The experimental study has shown a high efficiency of the offered
algorithm which is explained by its computing stability thanks to adaptive selection
of the cross-reactive threshold. Also optimality 1s achieved owing to adaptive
adjustment of a size of the immune network, 1.e. quantity of necessary detectors. A
high accuracy of detecting is shown, owing to reduction of quantity and the sizes of
"cavities" created. To compare the results of application of the algorithm an exact
benchmark diagnostics was used supported by experts. Results of diagnostics testify
the affinity of experts estimates and the estimates generated by means of the method
and algorithm developed.
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Bidyuk P.IL., Litvinenko V.L, Gasanov A.S. Immune network based method for
identification of turbine engine surging // A modified method and algorithm of
negative selection has been developed to solve the problem of anomalies detection in
functioning of complex engimeering systems. The method and algorithm for
anomalies 1dentification uses the mechanisms of artificial immune networks. The
distinctive feature of the algorithm is in updating of training process thanks to which
the possibility of adaptive selection 1s implemented. The experimental study has
shown high efficiency of the offered algorithm.

bunwok ILH., JInrtBunenxo B.H., I'acanoB A.C. Meroa wuwieHTHPURAIUN
NOMIIAZRA TYPOMHHOIO JIBUIATEIS ¢ MOMOIIBLI0O MMMYHHOM ceTn // s perenust
3aJaud  oOHapy:KeHHUsT aHoMalaui (YHKITHOHHUPOBAHHMS CIOKHOM TeXHHIEeCKON
CHUCTEMBI lIpe yiaracTed MOAUGMUIMPOBAHHLIA METOA M aJIlOPUTM OTPHIATCILIOIO
otOopa. [IpuHITUII 0OHapyKeHNSI OCHOBHIRAeTCS Ha MeXaHm3Me (PyHKITHOHUPOBaHHS
HCKYCCTBCHHOM MMMYHHOR ceTu. OTJIMYHATCIIBHBIM CBOKMCTBOM  IIPEJIOKEHHOIO
AJITOPUTMa €CTh BO3MOKHOCTL OOHOBIICHHS Hpolecca oOydenus, Ojarojgapsd deMy
peaausyercs BO3MOKHOCTD aJallTUBHONH celekimu. DhPeKTHBHOCTL NPUMCHCHUS
anropuT™Ma MOITRepkIeHa YKCIEPUMEeHTaTFHBIMH HCCIIETOBaHUIMHU.
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