
Web-testing

automation
Selenium IDE

Maryna Didkovska

1

To Automate or Not to Automate?

That is the Question!

Test automation supports:

 Frequent regression testing

 Rapid feedback to developers during the
development process

 Virtually unlimited iterations of test case execution

 Customized reporting of application defects

 Support for Agile and eXtreme development
methodologies

 Disciplined documentation of test cases

 Finding defects missed by manual testing

2

Selenium Components
Selenium is composed of three major tools. Each one has a
specific role in aiding the development of web.

These tools are:

 Selenium-IDE;

 Selenium Remote Control (RC); Selenium WebDriver

 Selenium Grid;

3

4

Selenium

Selenium is a robust set of tools that supports rapid

development of test automation for web-based

applications.

It is open source software, released under the Apache 2.0

license and can be downloaded and used without

charge.

http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/Apache_License
http://en.wikipedia.org/wiki/Apache_License

5

Selenium-IDE

Selenium-IDE (Integrated

Development Environment) is a

Firefox add-on that records clicks,

typing, and other actions to make

a test, which you can play back

in the browser.

6

Selenium-RC

Selenium Remote Control

(RC) is a test tool that

allows to write automated

web application UI tests in

any programming

language against any HTTP

website using any

mainstream JavaScript-

enabled browser.

7

Selenium Grid
Selenium Grid extends Selenium RC to distribute your tests

across multiple servers, saving you time by running tests in

parallel, cutting down on the time it takes to test multiple

browsers or operating systems.

With Selenium-Grid, multiple instances of Selenium-RC are

running on various operating system and browser

configurations.

Installation

http://seleniumhq.org/download/

8

9

10

11

12

Open the IDE

13

14

Building Test Cases
During recording, Selenium-IDE will automatically insert

commands into your test case based on your actions.

Typically, this will include:

 clicking a link - click or clickAndWait commands

 entering values - type command

 selecting options from a drop-down listbox - select

command

 clicking checkboxes or radio buttons - click command

Task 1

Record script with following steps:

 Open http://www.google.com.ua/

 Search for web application testing

 Goto Selenium site

Playback it

15

http://www.google.com.ua/
http://www.google.com.ua/

Base url :

http://www.google.com.ua/

Open /

type id=lst-ib web application

testing

clickAndWait name=btnK

clickAndWait

link=Selenium web

application testing

system

16

17

Running Test Cases
 Run a Test Case

 Run a Test Suite

 Stop and Start

 Stop in the Middle

 Start from the Middle

 To set a startpoint, select a command, right-click, and from

the context menu select Set/Clear Start Point.

 Run Any Single Command

 Double-click any single command to run it by itself.

18

Using Base URL to Run Test

Cases in Different Domains

19

Selenium Commands –

Selenese

Selenium provides a rich set of commands for fully testing

your web-application in virtually any way you can imagine.

A command is what tells Selenium what to do.

The command set is often called selenese.

These commands essentially create a testing language.

20

Selenium Basics
Selenium commands come in three “flavors”:

 Actions are commands that generally manipulate the
state of the application. They do things like “click this link”
and “select that option”. If an Action fails, or has an error,
the execution of the current test is stopped.

 Accessors examine the state of the application and store
the results in variables, e.g. “storeTitle”.

 Assertions are like Accessors, but they verify that the state
of the application conforms to what is expected. Examples
include “make sure the page title is X” and “verify that this
checkbox is checked”.

21

Assertions
All Selenium Assertions can be used in 3 modes:
 “assert”

 “verify”
 “waitFor”

When an “assert” fails, the test is aborted.

When a “verify” fails, the test will continue execution, logging
the failure.

“waitFor” commands wait for some condition to become true.
They will succeed immediately if the condition is already true.
However, they will fail and halt the test if the condition does
not become true within the current timeout setting.

22

Script Syntax
Selenium commands are simple, they consist of the command and

two parameters. For example:

The parameters are not always required; it depends on the

command.

Here are a couple more examples:

Command Target Value

verifyText //div//a[2] Login

Command Target Value

goBackAndWait

verifyTextPresent Welcome to My Home

Page

type id=phone (555) 666-7066

type id=phone ${myVariableAddress}

23

Parameters

Parameters vary, however they are typically:

 a locator for identifying a UI element within a page.

 a text pattern for verifying or asserting expected page

content.

 a text pattern or a selenium variable for entering text in

an input field or for selecting an option from an option

list.

24

Locators
For many Selenium commands, a target is required. This target
identifies an element in the content of the web application,
and consists of the location strategy followed by the location
in the format

 locatorType=location.

Locator Types:

 id (id=loginForm);

 name (name=username);

 xpath (xpath=/html/body/form[1]);

 link (link=Cancel);

 dom (dom=document.forms[0]);

 css (css=input.required[type="text"]);

25

Commonly Used Selenium

Commands

open opens a page using a URL

click/clickAndWait performs a click operation, and optionally waits for a new page to load

verifyTitle/assertTitle verifies an expected page title

verifyTextPresent verifies expected text is somewhere on the page

verifyElementPresent verifies an expected UI element, as defined by its HTML tag, is present on the

page

verifyText verifies expected text and it’s corresponding HTML tag are present on the

page

waitForPageToLoad pauses execution until an expected new page loads. Called automatically

when clickAndWait is used

waitForElementPresent pauses execution until an expected UI element, as defined by its HTML tag, is

present on the page

Matching Text Patterns -

Globbing Patterns
Globbing is fairly limited. Only two special characters
are supported in the Selenium implementation:

 * which translates to “match anything,” i.e.,
nothing, a single character, or many characters.

 [] (character class) which translates to “match
any single character found inside the square
brackets.” A dash (hyphen) can be used as a
shorthand to specify a range of characters (which
are contiguous in the ASCII character set).

examples:

 [aeiou] matches any lowercase vowel

 [0-9] matches any digit

 [a-zA-Z0-9] matches any alphanumeric character

26

 example of two commands that use globbing patterns. The
actual link text on the page being tested was
“Film/Television Department”; by using a pattern rather
than the exact text, the click command will work even if
the link text is changed to “Film & Television Department” or
“Film and Television Department”. The glob pattern’s
asterisk will match “anything or nothing” between the word
“Film” and the word “Television”.

 The actual title of the page reached by clicking on the link
was “De Anza Film And Television Department - Menu”. By
using a pattern rather than the exact text, the verifyTitle will
pass as long as the two words “Film” and “Television”
appear (in that order) anywhere in the page’s title.

Command Target Value

click link=glob:Film*Television Department

verifyTitle glob:*Film*Television*

27

Regular Expression Patterns
PATTERN MATCH

. any single character

[]
character class: any single character that appears inside the
brackets

* quantifier: 0 or more of the preceding character (or group)

+ quantifier: 1 or more of the preceding character (or group)

? quantifier: 0 or 1 of the preceding character (or group)

{1,5} quantifier: 1 through 5 of the preceding character (or group)

|
alternation: the character/group on the left or the
character/group on the right

() grouping: often used with alternation and/or quantifier

28

Command Target Value

click
link=regexp:Film.*Television

Department

verifyTitle regexp:.*Film.*Television.*

Command Target Value

open
http://weather.yahoo.com/for

ecast/USAK0012.html

verifyTextPresent
regexp:Sunrise: *[0-9]{1,2}:[0-

9]{2} [ap]m

Sunrise: * The string Sunrise: followed by 0 or more spaces

[0-9]{1,2} 1 or 2 digits (for the hour of the day)

: The character : (no special characters involved)

[0-9]{2} 2 digits (for the minutes) followed by a space

[ap]m “a” or “p” followed by “m” (am or pm)

29

http://weather.yahoo.com/forecast/USAK0012.html
http://weather.yahoo.com/forecast/USAK0012.html

Exact Patterns

select //select regexp:Real *

select //select exact:Real *

It uses no special characters at all. So, if you

needed to look for an actual asterisk character

(which is special for both globbing and regular

expression patterns), the exact pattern would be

one way to do that.

30

Store Commands and

Selenium Variables

Command Target Value

store paul@mysite.org userName

Command Target Value

verifyText //div/p ${userName}

Command Target Value

type id=login ${userName}

31

mailto:paul@mysite.org

A little bit more about store
 storeElementPresent

This corresponds to verifyElementPresent. It
simply stores a boolean value–”true” or “false”–
depending on whether the UI element is found.

 storeText

StoreText corresponds to verifyText. It uses a
locater to identify specific page text. The text, if
found, is stored in the variable. StoreText can be
used to extract text from the page being
tested.

32

echo - The Selenese Print

Command

 Selenese has a simple command that allows

you to print text to your test’s output. This is

useful for providing informational progress

notes in your test which display on the

console as your test is running.

Command Target Value

echo
Testing page

footer now.

echo
Username is

${userName}

33

What to test?
The simplest type of test, a content test, is a simple
test for the existence of a static, non-changing, UI
element. For instance
 Does each page have its expected page title?

This can be used to verify your test found an
expected page after following a link.

 Does the application’s home page contain an
image expected to be at the top of the page?

 Does each page of the website contain a footer
area with links to the company contact page,
privacy policy, and trademarks information?

 Does each page begin with heading text using
the <h1> tag? And, does each page have the
correct text within that header?

34

Verify

 Command Target Value

verifyTextPresent Marketing Analysis

Command Target Value

verifyElementPresent //div/p

verifyElementPresent id=Login

verifyElementPresent link=Go to Marketing Research

Command Target Value

verifyText //table/tr/td/div/p
This is my text and it
occurs right after the
div inside the table.

Alt : // ~ css=

35

Task 2

 Open http://seleniumhq.org

 Goto link http://seleniumhq.org/download/

 Assure that Title of the new page is

Downloads, when not – stop testing

 Verify that text Download is present on the

page and is used with h2 tag

 Assure that in table language Ruby is present

on the page, when not – stop testing

 Verify that version 2.25.0 is written in the table

36

http://seleniumhq.org/
http://seleniumhq.org/
http://seleniumhq.org/download/
http://seleniumhq.org/download/

Tips and Tricks

 Do I only check that the text exists on the
page? (verify/assertTextPresent)

 Do I only check that the HTML element
exists on the page? That is, the text,
image, or other content is not to be
checked, only the HTML tag is what is
relevant. (verify/assertElementPresent)

 Must I test both, the element and it’s text
content? (verify/assertText)

37

Task 3

 Open http://www.google.com.ua/

 Search for web application testing

 Goto Selenium site

 Save PageTitle of Selenium page into

variable – (store)

 Print out the value of this variable (echo)

38

http://www.google.com.ua/

Task 4
 Go to

http://demo.opensourcecms.com/wordpress/wp-
login.php

 Enter “admin” in the “Username” field

 Enter “demo123″ in the “Password” field

 Click on the “Log In” button

 Verify that the text “Howdy, admin” is present

 Click on the “Posts” link

 Click on the “Add New” button

 Type “Selenium Demo Post” in the title field

 Click on the “Publish” button

 Verify that the text “Post published” is present

39

http://demo.opensourcecms.com/wordpress/wp-login.php
http://demo.opensourcecms.com/wordpress/wp-login.php
http://demo.opensourcecms.com/wordpress/wp-login.php

Location Strategy
 the element ID

 the element name attribute

 an Xpath statement

 document object model (DOM)

Generally, using an ID locator is more efficient as it makes your test code

more readable. Using the name attribute also has similar advantages.

These also give the best performance. Xpath statements have been

known to be slow in Internet Explorer due to limations of IE’s Xpath

processor.

Sometimes you must use an Xpath or DOM locator , i.e. if the page source

does not have an ID or name attribute.

There is an advantage to using Xpath or DOM, you can locate an object

with respect to another object on the page.

For example, if there is a link that must occur within the second paragraph

within a <div> section, you can use Xpath or DOM to specify this. With ID

and name locators, you can only specify that they occur on the page–

somewhere on the page. If you must test that an image displaying the

company logo appears at the top of the page within a header section

Xpath may be the better locator.

40

41

Find Button
The Find button is used to see which UI element on the

currently displayed webpage (in the browser) is used in

the currently selected Selenium command. This is useful

when building a locator for a command’s first parameter

(see the section on locators in the Selenium Commands

chapter). It can be used with any command that identifies

a UI element on a webpage, i.e. click, clickAndWait, type,

and certain assert and verify commands, among others.

From Table view, select any command that has a locator

parameter. Click the Find button. Now look on the

webpage: There should be a bright green rectangle

enclosing the element specified by the locator parameter.

http://seleniumhq.org/docs/04_selenese_commands.html

42

Locator Assistance

Selenium and Javascript
 JavaScript can also be used to help generate

values for parameters, even when the

parameter is not specified to be of type script.

 Special syntax is required–the JavaScript snippet

must be enclosed inside curly braces and

preceded by the label javascript, as in

javascript {*yourCodeHere*}.

43

Command Target Value

store league of nations searchString

type q

javascript{storedVars[‘se

archString’].toUpperCase

()}

Task 5
 Goto

http://www.theautomatedtester.co.uk/tutoria
ls/selenium/Selenium_JavaScript.htm

 Enter numbers into each of the text boxes
and then click on one of the buttons

 Compare it against what we think the answer
is going to be. For this we need to use the
verifyEval or assertEval commands. Your next
step in the script should look a lot like the
following: verifyEval | javascript{1+1} |
${total}

44

http://www.theautomatedtester.co.uk/tutorials/selenium/Selenium_JavaScript.htm
http://www.theautomatedtester.co.uk/tutorials/selenium/Selenium_JavaScript.htm
http://www.theautomatedtester.co.uk/tutorials/selenium/Selenium_JavaScript.htm

TBC…

See you next week!

45

