Інститут прикладного системного аналізу НТУ України «Київський політехнічний інститут» Міністерство освіти і науки, молоді та спорту України

Построение модели для расчета наилучшего маркетингового предложения для клиентов банка

Выполнил:

Студент гр. КА-42м Слободюк А.Ю.

Научный руководитель:

Профессор, д.т.н. Зайченко Е.Ю.

Цель работы

 Разработка моделей, которые на основании демографических и поведенческих характеристик клиентов определяют их склонность к покупке продукта

Объект исследования

 Анализ клиентских сегментов на основании построенных моделей для повышения эффективности работы отдела перекрестных продаж

Предмет исследования

 Исследование поведенческих моделей для рассчета наилучшего маркетингового предложения

Актуальность работы

 В условиях нестабильной ситуации в стране работа с внутренней базой клиентов банка является основным условием успешной деятельности

Область использования разработанной модели

Pacчет best offer и next best offer для всей клиентской базы

- Расчет вероятности покупки
- Обработка продуктовых ограничений

Выборка клиентов для активных маркетинговых кампаний

- Построение скор карты
- Отсечение группы клиентов с наивысшими скоринговыми баллами для проведения кампании

Используемые данные (в зависимости от наличия)

Соц.-дем. показатели

Пол

Возраст

Доход

Наличие детей

Семейной положение

Образование

Место жительства

Сфера занятости

Продуктовые показатели

Банковский сегмент клиента

Количество продуктов в разрезе типа продукта

Лимиты по кредитной карте/кредиту, сумма депозитов, обороты по дебетным картам

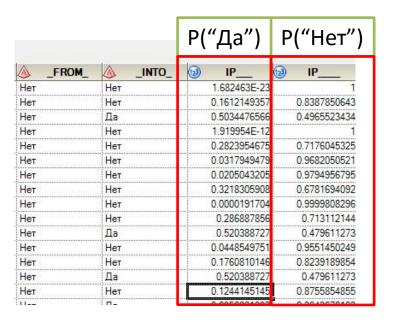
Поведение клиента в банке

Аккаунт в ибанкинге/Активность клиента в и-банкинге

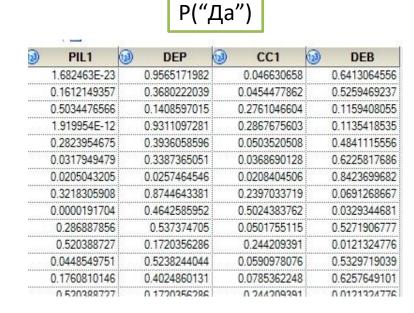
Транзакционное поведение клиента по кредитным картам/дебетным картам

Pacчет best offer и next best

ЭТАП 1 Определение типа продукта (КК, Депозит, Кредит, Пакет)



Вероятность покупки каждого типа продукта



Агрегированные вероятности положительного исхода

Pacчет best offer и next best

<u>ЭТАП 2</u> ЕСЛИ (Best offer = CC) ИЛИ (Next best offer = CC) ТО "Определение типа кредитной карты"

• Для типов карт: Cash, Grace, ЭКО, МТС – используется модель логистической регрессии аналогичная модели из Этапа 1.

Обучающей выборкой выступает выборка из клиентов, у которых есть кредитные карты данных типов, проданные в рамках активных маркетинговых кампаний.

- Для премиальных карт: при первой заливке определяем best или next best offer в зависимости от:
 - сегмента клиента (Affluent)
 - эталонных продуктов для сегмента (Platinum, World)

т.к. клиентов с данным типом карты недостаточно для обучения модели.

Pacчeт best offer и next best

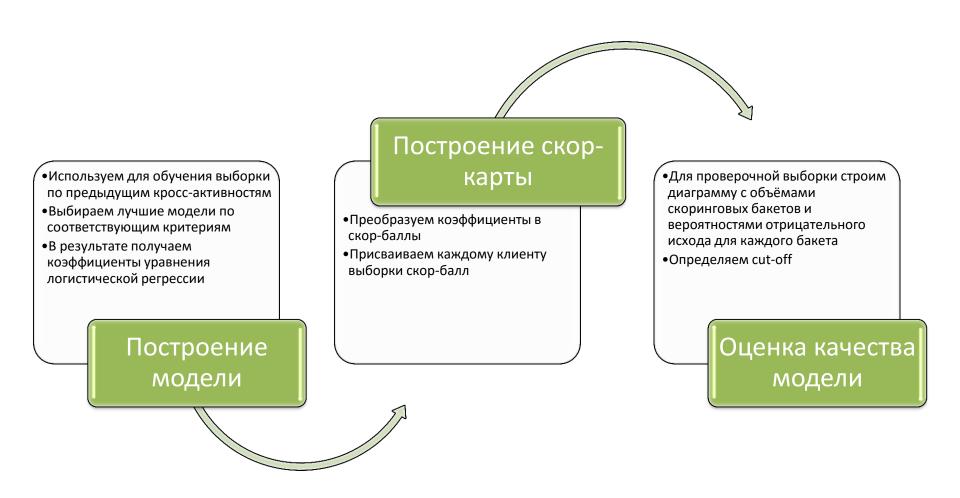
ЭТАП 3 Отсечение продуктовых ограничений

- >2 CC
- >3 Кредитных продуктов
- Наличие продукта, соответствующего предложению
- Отсечение клиентов с просрочкой

Best offer N	best of Ser	Приоритет 3	Приоритет 4
Кредитная карта	Кред. т	Депозит	Пакет услуг

Пример.

Для клиента рассчитано «Лучшее предложение» – КК, а предложение «Также доступно» - кредит наличными. После расчета предложений выполняется проверка на продуктовые ограничения. У клиента есть действующий кредит наличными. В этом случае предложением «Также доступно» выступит третий по вероятности покупки продукт – Депозит.



- Используем для обучения выборки по предыдущим кросс-активностям
- •Выбираем лучшие модели по соответствующим критериям
- •В результате получаем коэффициенты уравнения логистической регрессии

Построение модели

Parameter		Estimate
Intercept		-2.6901
Сумма рассрочки	No	0.1779
Наличие ЗП проекта	No	1.3332
Сумма кредита физ.ли	No	-0.2533
Наличие кредитки	Cash	0.4835
Наличие кредитки	Grace	0.7516
Наличие кредитки	No	-1.8606
Тип клиента с кредит	No	2.6128
Тип клиента с кредит	Активный	-0.9811
Тип клиента с кредит	Выбирает лимит под 100%	-1.4024
Тип клиента с кредит	Неактивный	0
Пол	F	-0.1488
Возраст	[20-30]	0.0805
Возраст	[30-40]	0.1095
Возраст	[40-50]	-0.1414
Возраст	[50-60]	-0.1355
Доход	[2000-4000]	0.7853
Доход	[4000-6000]	-0.0874
Доход	[6000-8000]	-0.3026
Доход	[8000-10000]	-0.8707
Доход	[<2000]	1.5131
Дети	[0]	0.1558
Дети	[1]	0.1002
Дети	[2]	-0.0141

Коэффициенты логистической регрессии

- •Используем для обучения выборки по предыдущим кросс-активностям
- Выбираем лучшие модели по соответствующим критериям
- •В результате получаем коэффициенты уравнения логистической регрессии

Построение модели

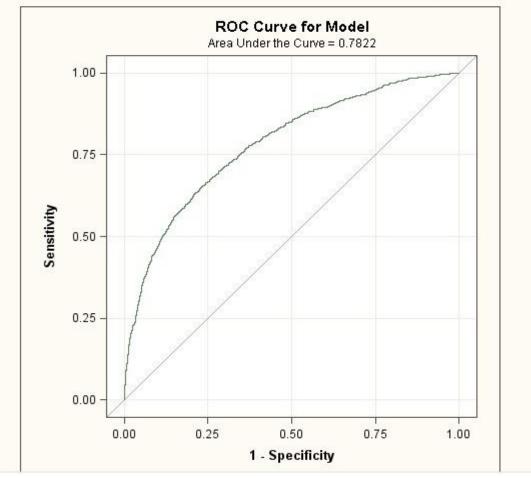
Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates 5547.177 4682.225 AIC SC 5553.471 5198.337 5545.177 -2 Log L 4518.225 Testing Global Null Hypothesis: BETA=0 Chi-Square DF Pr > ChiSq Test Likelihood Ratio 1026.9526 81 <.0001 Score 903.8655 81 <.0001 Wald 711.7124 81 <.0001

Характеристики модели

- Используем для обучения выборки по предыдущим кросс-активностям
- •Выбираем лучшие модели по соответствующим критериям
- •В результате получаем коэффициенты уравнения логистической регрессии

Построение модели

Association of Predicted Probabilities and Observed Responses					
Percent Concordant	78.2	Somers' D	0.564		
Percent Discordant	21.8	Gamma	0.564		
Percent Tied	0.0	Tau-a	0.282		
Pairs	4000000	С	0.782		



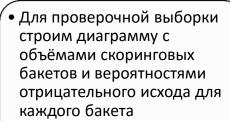
11

Построение скор-карты

- Преобразуем коэффициенты в скор-баллы
- Присваиваем каждому клиенту выборки скор-балл

Analysis of Ma	ximum Likelihood Estimates	
Критерий		Скор-балл
Сумма рассрочки	No	41
	Yes	40
Наличие ЗП проекта	No	39
	Yes	77
Сумма кредита физ.лица	No	46
	Yes	41
Наличие кредитки	Cash	4
	Grace	0
	No	9
	Old_type	18
Тип клиента с кредиткой	No	73
	Активный	102
	Выбирает лимит под 100%	170
	Неактивный	36
	Средняя активность	43
Пол	F	36
	M	15
Возраст	[20-30]	20
	[30-40]	40
	[40-50]	33
	[50-60]	37
	[>60]	34
Доход	[2000-4000]	133
	[4000-6000]	37
	[6000-8000]	41
	[8000-10000]	72
	[<2000]	60
	[>10000]	80
Дети	[0]	42
	[1]	36
	[2]	36
	[3+]	48

Скор-баллы



• Определяем cut-off

Оценка качества модели

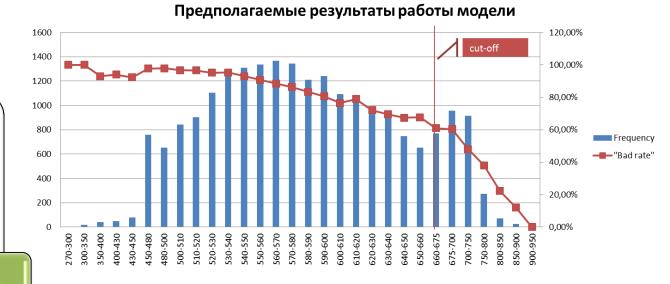
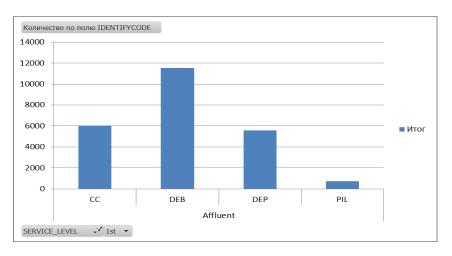


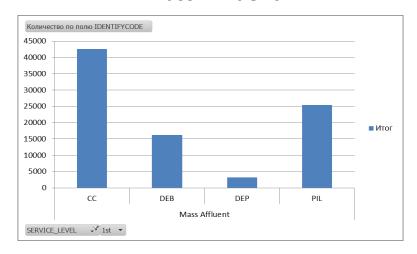
Диаграмма с объёмами скоринговых бакетов и вероятностями отрицательного исхода

Результаты: распределение выборки по предложениям в разрезе сегментов

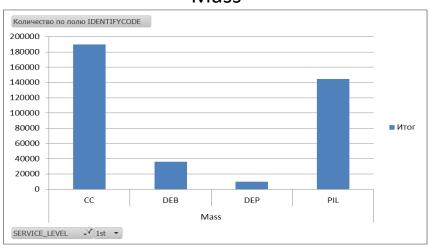
Affluent



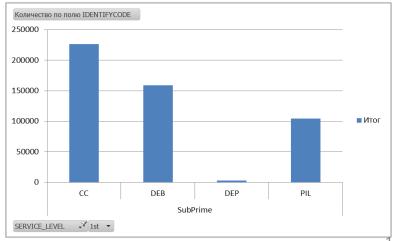
Mass Affluent



Mass

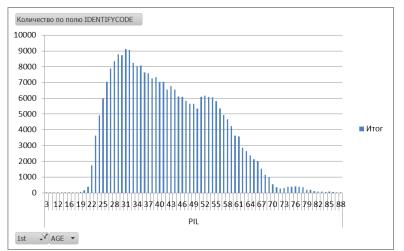


SubPrime

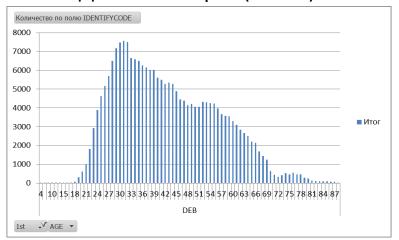


Результаты: распределение выборки в разрезе рассчитанных предложений по возрасту

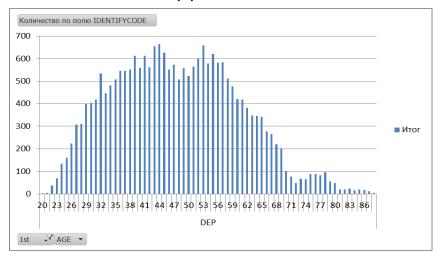
Кредит



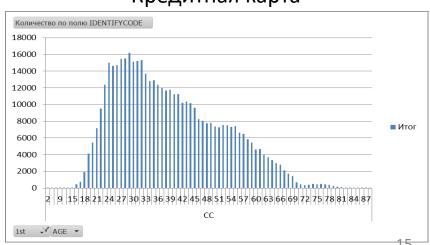
Дебетная карта (Пакет)



Депозит



Кредитная карта



Результаты: описание сегментов

Лучшее предложение	Описание сегмента (предварительно
Кредит наличными	Mass/Mass Affluent, около 30 лет (второй всплеск – около 50-ти)
Депозит	Чем выше сегмент – тем большее количество депозитных предложений. Возраст: от 35-ти до 50-ти
Кредитная карта	SubPrime/Mass/Mass Affluent, возраст от 24-х до 31-го
Дебетная карта (Пакет)	Группа 1 — SubPrime, Группа 2 — Affluent. Возраст около 30-ти

Проверка результатов (кампания по продаже кредита наличными)

GROUP	Кол-во	Заявки ПИЛ	%%	Продажа ПИЛ	%%
High	26777	1703	2,4%	850	3,2%
Middle+	23982	1016	4,2%	356	1,5%
Middle	65971	448	0,7%	220	0,3%
Middle-	19266	76	0,4%	46	0,2%
Low	62759	85	0,1%	42	0,1%
TOTAL	198755	3328	1,7%	1514	0,8%

GROUP	Кол-во	Заявки ПИЛ	%%	Продажа ПИЛ	%%	
кц						
High	18765	1560	8,31%	746	3,98%	
Middle+	19241	940	4,89%	301	1,56%	
Middle	3426	95	2,77%	20	0,58%	
		Пасс	ив			
High	4764	31	0,65%	17	0,36%	
Middle	5121	8	0,16%	4	0,08%	
Low	3843	4	0,10%	2	0,05%	
СМС_ПИЛ						
High	3248	112	3,45%	87	2,68%	
Middle+	4741	76	1,60%	55	1,16%	
Middle	57424	345	0,60%	196	0,34%	
Middle-	19266	76	0,39%	46	0,24%	
Low	58916	81	0,14%	40	0,07%	

Выводы

- Проведено исследование клиентской базы банка и на основе данных о маркетинговых кампаниях 2014-2015 года построены скоринговые модели для определения наилучшего маркетингового предложения
- Разработан программный проект в среде SAS, который дает возможность строить скоринговые модели и применять их для всей клиентской базы
- После внедрения данного проекта проанализированы итоги новых маркетинговых кампаний. В результате можем сделать следующий вывод: конверсия контакта в сделку в среднем увеличилась в два раза.