Виконала: Павлюк Юлія Русланівна Науковий керівник: професор Подладчіков Володимир Миколайович

РОЗРОБКА МЕТОДІВ СТАТИСТИЧНОГО АНАЛІЗУ ДЛЯ ДОСЛІДЖЕННЯ КОРОНАЛЬНИХ ХВИЛЬ

Ціль, об'єкт та предмет дослідження

- **Ціль дослідження**: дослідження геометричної структури і кінематичних характеристик корональних хвиль на Сонці на основі супутникових даних.
- Об'єкт дослідження: корональні хвилі на Сонці
- Предмет дослідження: статистичний аналіз сонячних зображень, методи епіполярної геометрії

Постановка задачі

- 1. Виконати огляд і провести аналіз процесів сонячної активності.
- 2. Провести аналіз статистичних методів обробки зображень.
- 3. Розробити алгоритм знаходження кінематичних характеристик EUV-хвилі за супутниковими даними.
- 4. Провести порівняльний аналіз методів епіполярної геометрії.
- 5. Розробити алгоритм знаходження висоти EUV-хвилі за даними, отриманими по супутникових зображеннях.
- 6. Виконати аналіз отриманих результатів.

EUV-хвиля і діммінги

4

EUV (Extreme Ultraviolet)-хвиля представляє собою збурення у вигляді дифузного кільцевого фронту, який розширюється зі швидкістю декількох сотень км/с. **Діммінг** - область пониженої яскравості в нижній короні. Основною гіпотезою виникнення є спустошення корони в результаті ерупції магнітної структури.

Вплив сонячної активності

Earth Currents

Bell Laboratories, Lucent Technologies

Signal Scintillation

Plasma

Bubble

Electricity Grid Disruption

Radio Wave

Disturbance

Telecommunication Cable Disruption

Computer and Memory

Upsets and Failures

Solar Flare

Protons

Airline Passenger Radiation Astronaut Safety

Rainfall Water Vapor

Atmospheric Drag

5

Місія SOHO (Сонячна і геліосферна обсерваторія)

- Програма ЄКА та НАСА з вивчення Сонця від ядра до зовнішньої корони, а також сонячного вітру.
- □ Запуск відбувся 2 грудня 1995 року.
- Місія була продовжена шість разів (до 31 грудня 2016)
- 12 різних наборів інструментів (EIT, LASCO, CDS, …)

7 квітня 1997 року

12 травня 1997 року

7

Гістограма розподілу

Система координат

- Полярна система координат з початком в центрі ерупції
- Перехід з декартової до полярної системи координат:

$$M = \begin{vmatrix} \cos\varphi & \sin\varphi & 0 \\ -\sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} \cos(\frac{\pi}{2} - \theta) & 0 & \sin(\frac{\pi}{2} - \theta) \\ 0 & 1 & 0 \\ -\sin(\frac{\pi}{2} - \theta) & 0 & \cos(\frac{\pi}{2} - \theta) \end{vmatrix}$$

Знайшовши нові координати, обчислимо відстань до еруптивного центру від кожної точки на зображенні.
L = Rarccos(sin θ sin θ_{EC} + cos θ cos θ_{EC} cos φ – φ_{EC})

Кільцевий аналіз супутникових зображень

- EIT хвилі мають вигляд дифузійної циркулярної структури, яка поширюється від центру виверження.
- Досліджуються варіації інтенсивностей множини кілець навколо еруптивного центру під час проходження хвильового фронту.
- Загальна інтегральна інтенсивність уздовж кільця буде менше залежати від локалізованих відхилень, ніж окремі пікселі.

Інтегральна інтенсивність т кільця

Радіальна швидкість ЕІТ хвиль

12

12 травня 1997 р	оку	7 квітня 1997 року						
Час (UT)	V _{EIT} км/с	Час (UT)	V _{EIT} (SW) км/с	V _{EIT} (NE) км/с				
05:07 - 04:50	227.19	14:12 - 14:00	290.63	280.68				
05:24 - 05:07	323.92	14:21 – 14:12	508.29	287.60				
05:41 - 05:24	162.60	14:35 – 14:21	375.01	377.70				
$\overline{V_{EIT}}$	237.90	$\overline{V_{EIT}}$	391,31	315,33				

Секторний аналіз супутникових зображень

- Корональна хвиля має фрагментарну структуру: яскраві області локалізуються в секторах, обмежених кутовими координатами
- Секторний аналіз дозволяє виділити тільки масштабне збільшення інтенсивності, виключаючи точкові збурення.
- Знаходимо область локалізації хвильового фронту, що відповідає точкам, оточеним групою пікселів з високою інтенсивністю.

Кутова координата цієї області визначається наступним чином:

$$\varphi_C = \frac{\sum_{j=1}^n I_n * \varphi_j}{\sum_{j=1}^n I_j}$$

Де n — кількість пікселів на інтервалі, $\varphi_j j = [1, n]$ — кутова координата j пікселя, I_j — ваговий коефіцієнт j пікселя.

Залежність зважених значень інтенсивностей від ϕ

Кутова швидкість ЕІТ хвиль

5										
7 квітня	1997 року		12 травня 1997 року							
Δt [c]	ω[рад/с] SW	ω[рад/с] NE	Δt [c]	ω[рад/с] SE	ω[рад/с] NW					
754	3.13×10^{-4}	2.65×10^{-4}	1020	8.10×10^{-6}	-					
551	2.03×10^{-4}	7.49×10^{-4}	1022	8.44×10^{-6}	1.88×10^{-4}					
791	1.32×10^{-4}	2.4×10^{-5}	1018	-	3.27×10^{-6}					

Швидкість EIT хвиль

7 квітня	1997 року		12 трав	12 травня 1997 року				
Δt [c]	<i>V</i> [км/с] <i>SW</i>	<i>V</i> [км/с] <i>NE</i>	Δt [c]	<i>V</i> [км/с] <i>SE</i>	<i>V</i> [км/с] <i>NW</i>			
754	286.77	178.90	1020	223.27	-			
551	861.94	656.73	1022	318.36	207.80			
791	172.52	137.66	1018	_	95.78			

Місія STEREO

- Програма НАСА з вивчення сонячно-земних зв'язків
- □ Запуск відбувся 26 жовтня 2006 року.
- Орбіта приблизно в 1 а.о. від Сонця
- Ідентичні космічні апарати:

Ahead – обганяє Землю на 22°

Behind – віддаляється на 22[°]

• 4 різні набори інструментів :

SECCHI, SWAVES, IMPACT, PLASTIC

Більше 2 ГБ інформації кожного дня

Епіполярна геометрія

Ol, Or – оптичні центри лівої і правої камери P – точка об'єкта pl, pr – проекція точки об'єкта на лівому і правому зображенні Епіполярна лінія – перетин епіполярної площини і площини зображення.

EUV-хвиля і КВМ 7 грудня 2007 року

Добре і погано обумовлені області дослідження

Перетин гребеня хвилі з епіполярною лінією - графічний розв'язок системи двох рівнянь, одне з яких характеризує межу гребеня хвилі, а інше описує епіполярну лінію

Хороша обумовленість

Епіполярна лінія і кордон гребеня хвилі взаємно перпендикулярні

Мінімальний вплив помилок на знаходження координат

Погана обумовленість

Кут між лініями прямує до нуля Кут між лініями дорівнює нулю

система стає некоректною

система вироджується

Знаходження точок на гребні хвилі

<u>Ідея:</u> по-піксельна ідентифікація точок відповідності на двох зображеннях з використанням епіполярної геометрії

Хвиля не має гладкої поверхні з чіткими краями меж яскравості, кольору і текстури

Гребінь хвилі істотно відрізняється від внутрішньої сторони фронту хвилі за кольором, яскравістю та текстурою.

Система координат супутника

Heliocentric Earth Equatorial

22

$$M = \begin{vmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{vmatrix} \begin{vmatrix} \cos\varphi & -\sin\varphi & 0 \\ \sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Схема побудови епіполярної лінії

Похибка візуального вибору

- □ Похибка, яка визначається шириною пікселів.
- Точка Е перетин променів АС і ВD. Враховуючи дискретність представлення інформації, промені можуть і не перетинатися в точці Е.

АС проходить через деяку точку E_1 на гребні хвилі, BD проходить через точку E.

$$EE_{1} = \frac{\left| \left(\overrightarrow{DC}, \overrightarrow{s_{1}}, \overrightarrow{s_{2}} \right) \right|}{\left| \left[\overrightarrow{s_{1}}, \overrightarrow{s_{2}} \right] \right|}$$

 $\overrightarrow{S_1}$, $\overrightarrow{S_2}$ - спрямовуючі вектори AC і BD \overrightarrow{DC} - вектор, що з'єднує точки на прямих

Характеристики точок Е на гребні хвилі о 4:25 UT

25

Східний фронт хвилі					Західний фронт хвилі						
		Відстань					Висота	Відстань			
Точки	Висота Е-F	C-F	EE1	Low	Up	Точки	E-F	D-F	EE1	Low	Up
1	13745	4327	330	13050	14652	1	41548	23315	136	37509	46721
2	18972	5997	1266	18020	20473	2	38757	21834	457	34962	43487
3	21019	6507	234	19846	22506	3	31327	17727	545	28264	35104
4	18115	5601	734	17122	19521	4	39477	22025	1093	35619	44036
mean	17963	5608	641	17010	19288	5	29617	16443	657	26817	33229
std	3065	931	470	2873	3332	6	32458	17972	1152	29259	36027
						mean	35530	19886	673	32072	39767
						std	4986	2839	389	4484	5637

Характеристики точок Е на гребні хвилі о 4:35 UT

Східний фронт хвилі					Західний фронт хвилі						
Точка	Висота Е-F	Відстань С-F	EE1	Low	Up	Точка	Висота E-F	Відстань D-F	EE1	Low	Up
1	98882	36361	0	97629	102869	1	122810	74893	777	106717	144712
2	96218	35363	711	94973	100405	2	116658	71198	1007	101449	137255
3	100537	37083	1	99334	104602	3	120944	74753	811	104803	143159
4	98484	36336	814	97466	102359	4	114921	71074	825	99820	135836
5	99806	36752	315	98727	103568	5	113891	70651	110	99097	134852
6	89931	33407	906	89227	92978	6	120290	74576	400	104824	142505
7	103436	38974	942	102996	106134	7	110790	68236	40	97228	130642
8	105461	38633	942	104240	108916	8	112226	68898	36	98715	132189
9*	84118	30558	902	82702	88015	9	111174	67334	1493	96679	130203
10*	83904	30630	836	82611	87625	10	94566	55464	867	83262	109117
11*	62501	22639	944	61323	65362	11*	86673	49685	832	76935	99003
mean	93025	34249	665	91930	96621	12*	69782	41185	965	61266	80239
std	12424	4776	375	12504	12591	mean	107894	65662	680		
						std	16031	10915	445		

Висновки

- Запропоновано підхід, який дозволяє виділити ділянки проходження корональної хвилі на основі статистичних даних.
- На основі запропонованого методу визначено положення хвильового фронту та його локалізацію на сфері для подій 7 квітня та 12 травня 1997 року.
- За допомогою кільцевого і секторного аналізу було отримано оцінки радіальної і кутової складової швидкості та повне значення швидкості для хвилі 7 квітня та 12 травня 1997 року.
- Описано підхід, що дозволяє ідентифікувати гребінь хвилі та визначити висоту.
- Визначено, що EUV хвиля виникає з початковою висотою 18 Мм-36 Мм, а протягом інтервалу часу 4:25 UT-4: 35 UT різко збільшується до 93 Мм-108 Мм. Помилка при визначенні висоти може складати 5-25%.

Наукові досягнення

- Павлюк Ю. Р. Методи епіполярної геометрії для визначення просторової структури коронального викиду маси / Павлюк Ю. Р., Подладчіков В. М // Системний аналіз та інформаційні технології: Матеріали міжнародної науково-технічної конференції (26-30 травня 2014р., Київ).—2014.
- Павлюк Ю. Р. Визначення просторової структури процесів сонячної активності при обробці супутникових зображень / Павлюк Ю. Р., Подладчіков В. М // «Автоматика 2014»: ХХІ Міжнародна конференція з автоматичного управління (23-27 вересня 2014р., Київ). 2014
- Павлюк Ю. Р. Розробка методів статистичного аналізу для визначення швидкості корональних хвиль / Павлюк Ю. Р., Подладчіков В. М // Системний аналіз та інформаційні технології: Матеріали міжнародної науково-технічної конференції (30 травня – 2 червня 2016р., Київ).— 2016.
- □ Павлюк Ю. Р. Застосування епіполярної геометрії для стереоскопічного аналізу корональної хвилі / Павлюк Ю. Р., Подладчікова О. В., Подладчіков В. М // Системні дослідження та інформаційні технології. 2016. №2.

